GLD.lm.full {GLDreg} | R Documentation |
This function fits a GLD regression linear model and conducts simulations to display the statistical properties of estimated coefficients
Description
The function is an extension of GLD.lm
and defaults to
1000 simulation runs, coefficients and statistical properties of coefficients
can be plotted as part of the output.
Usage
GLD.lm.full(formula, data, param, maxit = 20000, fun, method = "Nelder-Mead",
range = c(0.01, 0.99), n.simu = 1000, summary.plot = TRUE, init = NULL)
Arguments
formula |
A symbolic expression of the model to be fitted, similar to the formula
argument in |
data |
Dataset containing variables of the model |
param |
Can be "rs", "fmkl" or "fkml" |
maxit |
Maximum number of iterations for numerical optimisation |
fun |
If param="fmkl" or "fkml", this can be one of If param="rs", this can be one of |
method |
Defaults to "Nelder-Mead" algorithm, can also be "SANN" but this is a lot slower and may not as good |
range |
The is the quantile range to plot the QQ plot, defaults to 0.01 and 0.99 to avoid potential problems with extreme values of GLD which might be -Inf or Inf. |
n.simu |
Number of times to repeat the simulation runs, defaults to 1000. |
summary.plot |
Whether to plot the coefficients graphically, defaults to TRUE. |
init |
Choose a different set of initial values to start the optimisation process. This can either be full set of parameters including GLD parameter estimates, or it can just be the coefficient estimates of the regression model. |
Details
This function usually takes some time to run, as it involves refitting the GLD regression model many times, the progress of the simulation is outputted to the R screen, so users can guage the progress of the computation.
Value
[[1]] |
Output of |
[[2]] |
A matrix showing the bias adjustment, coefficents of the model, parameters of GLD and whether the result converged at each run |
[[3]] |
Adjusted simulation result so that the empirical mean of
coefficients is the same as the estimated parameters obtained in
|
Author(s)
Steve Su
References
Su (2015) "Flexible Parametric Quantile Regression Model" Statistics & Computing May 2015, Volume 25, Issue 3, pp 635-650
See Also
GLD.lm
, GLD.quantreg
,
summaryGraphics.gld.lm
Examples
## Dummy example
## Create dataset
set.seed(10)
x<-rnorm(200,3,2)
y<-3*x+rnorm(200)
dat<-data.frame(y,x)
## Fit FKML GLD regression with 3 simulations
fit<-GLD.lm.full(y~x,data=dat,fun=fun.RMFMKL.ml.m,param="fkml",n.simu=3)
## Not run:
## Extract the Engel dataset
library(quantreg)
data(engel)
## Fit a full GLD regression
engel.fit.full<-GLD.lm.full(foodexp~income,data=engel,param="fmkl",
fun=fun.RMFMKL.ml.m)
## Extract the mammals dataset
library(MASS)
## Fit a full GLD regression
mammals.fit.full<-GLD.lm.full(log(brain)~log(body),data=mammals,param="fmkl",
fun=fun.RMFMKL.ml.m)
## Using quantile regression coefficients as starting values
library(quantreg)
mammals.fit1.full<-GLD.lm.full(log(brain)~log(body),data=mammals,param="fmkl",
fun=fun.RMFMKL.ml.m, init=rq(log(brain)~log(body),data=mammals)$coeff)
## Using the result of mammals.fit.full as initial values
mammals.fit2.full<-GLD.lm.full(log(brain)~log(body),data=mammals,param="fmkl",
fun=fun.RMFMKL.ml.m, init=mammals.fit1.full[[1]][[3]])
## End(Not run)