fun.diag.ks.g.bimodal {GLDEX} | R Documentation |
Compute the simulated Kolmogorov-Smirnov tests for the bimodal dataset
Description
This function counts the number of times the p-value exceed 0.05 for the null hypothesis that the observations simulated from the fitted distribution is the same as the observations simulated from the bimodal data set.
Usage
fun.diag.ks.g.bimodal(result1, result2, prop1, prop2, data, no.test = 1000,
len = floor(0.9 * length(data)), param1, param2, alpha = 0.05)
Arguments
result1 |
A vector representing the four parameters of the first generalised lambda distribution. |
result2 |
A vector representing the four parameters of the second generalised lambda distribution. |
prop1 |
Proportion of the first distribution fitted to the bimodal dataset. |
prop2 |
Proportion of the second distribution fitted to the bimodal dataset. |
data |
The bimodal dataset. |
no.test |
Total number of tests required. |
len |
Number of data to sample. |
param1 |
Type of first generalised lambda distribution, can be
|
param2 |
Type of second generalised lambda distribution, can be
|
alpha |
Significance level of KS test. |
Value
A numerical value representing number of times the p-value exceeds alpha.
Note
If there are ties, jittering is used in ks.gof
.
Author(s)
Steve Su
References
Stephens, M. A. (1986). Tests based on EDF statistics. In Goodness- of-Fit Techniques. D'Agostino, R. B. and Stevens, M. A., eds. New York: Marcel Dekker.
Su, S. (2005). A Discretized Approach to Flexibly Fit Generalized Lambda Distributions to Data. Journal of Modern Applied Statistical Methods (November): 408-424.
Su (2007). Nmerical Maximum Log Likelihood Estimation for Generalized Lambda Distributions. Computational Statistics and Data Analysis: *51*, 8, 3983-3998.
Su (2007). Fitting Single and Mixture of Generalized Lambda Distributions to Data via Discretized and Maximum Likelihood Methods: GLDEX in R. Journal of Statistical Software: *21* 9.
See Also
Examples
# Fit the faithful[,1] data from the MASS library
fit1<-fun.auto.bimodal.ml(faithful[,1],init1.sel="rprs",init2.sel="rmfmkl",
init1=c(-1.5,1,5),init2=c(-0.25,1.5),leap1=3,leap2=3)
# Run diagnostic KS tests
fun.diag.ks.g.bimodal(fit1$par[1:4],fit1$par[5:8],prop1=fit1$par[9],
data=faithful[,1],param1="rs",param2="fmkl")