fun.bimodal.fit.pml {GLDEX} | R Documentation |
Finds the final fits using partition maximum likelihood estimation for the bimodal dataset.
Description
This is the secondary optimization procedure to evaluate the final bimodal
distribution fits using the partition
maximum likelihood. It usually relies on initial values found by
fun.bimodal.init
function.
Usage
fun.bimodal.fit.pml(data1, data2, first.fit, second.fit, prop, param1, param2,
selc1, selc2)
Arguments
data1 |
First data set, usually obtained by
|
data2 |
Second data set, usually obtained by
|
first.fit |
The distribution parameters or the initial values of the first distribution fit. |
second.fit |
The distribution parameters or the initial values of the second distribution fit. |
prop |
The proportion of the data set, usually obtained from
|
param1 |
Can be either |
param2 |
Can be either |
selc1 |
Selection of initial values for the first distribution, can be
either |
selc2 |
Selection of initial values for the second distribution, can be
either |
Details
This function should be used in tandem with fun.bimodal.init
function.
Value
par |
The first four numbers are the parameters of the first generalised lambda distribution, the second four numbers are the parameters of the second generalised lambda distribution and the last value is the proportion of the first generalised lambda distribution. |
value |
The objective value of negative likelihood obtained. |
counts |
A two-element integer vector giving the number of calls to functions. Gradient is not used in this case. |
convergence |
An integer code.
|
message |
A character string giving any additional information returned
by the optimizer, or |
Note
There is currently no guarantee of a global convergence.
Author(s)
Steve Su
References
Su (2007). Fitting Single and Mixture of Generalized Lambda Distributions to Data via Discretized and Maximum Likelihood Methods: GLDEX in R. Journal of Statistical Software: *21* 9.
See Also
fun.bimodal.fit.ml
, fun.bimodal.init
Examples
# Extract faithful[,2] into faithful2
faithful2<-faithful[,2]
# Uses clara clustering method
clara.faithful2<-clara(faithful2,2)$clustering
# Save into two different objects
qqqq1.faithful2.cc<-faithful2[clara.faithful2==1]
qqqq2.faithful2.cc<-faithful2[clara.faithful2==2]
# Find the initial values
result.faithful2.init<-fun.bimodal.init(data1=qqqq1.faithful2.cc,
data2=qqqq2.faithful2.cc, rs.leap1=3,fmkl.leap1=3,rs.init1 = c(-1.5, 1.5),
fmkl.init1 = c(-0.25, 1.5), rs.leap2=3,fmkl.leap2=3,rs.init2 = c(-1.5, 1.5),
fmkl.init2 = c(-0.25, 1.5))
# Find the final fits
result.faithful2.rsrs<-fun.bimodal.fit.pml(data1=qqqq1.faithful2.cc,
data2=qqqq2.faithful2.cc, result.faithful2.init[[2]],
result.faithful2.init[[3]], result.faithful2.init[[1]],param1="rs",
param2="rs",selc1="rs",selc2="rs")
# Output
result.faithful2.rsrs