Theta.EAP {GGUM} | R Documentation |
Estimate thetas and their SEs (GUM, GGUM)
Description
Theta.EAP
estimates the person theta parameters via EAP.
Usage
Theta.EAP(IP, SE = TRUE, precision = 4, N.nodes = 30)
Arguments
IP |
Object of class |
SE |
Logical value: Estimate the standard errors of the theta estimates?
Default is |
precision |
Number of decimal places of the results (default = 4). |
N.nodes |
Number of nodes for numerical integration (default = 30). |
Value
If SE = TRUE
, the function returns an N\times 2
matrix with two columns (thetas, SEs), where N
is the number of
rows in the data matrix (i.e., persons). If SE = FALSE
, the function
returns the theta estimates as a vector of length N
.
Details
The EAP procedure used here is based on Roberts, Donoghue,
and Laughlin (2000), namely Equation 25 for the \theta
estimates and Equation 26 for corresponding standard errors. The EAP
estimate is the posterior mean of the \theta
distribution for
the corresponding response pattern. The standard error is computed as an
approximation to the standard deviation of the posterior distribution. See
Roberts et al. (2000) for more details.
Author(s)
Jorge N. Tendeiro, tendeiro@hiroshima-u.ac.jp
Examples
# For GUM:
# Generate data
# (toy example: Too few items (due to computation time constraints) for
# accurate estimation of person parameters; larger number of items is
# required in practice):
gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139)
# Fit the GUM:
fit1 <- GUM(gen1$data, 3)
# Estimate the theta parameters:
Theta.EAP(fit1)
## Not run:
# For GGUM:
# Generate data:
set.seed(1); C <- sample(3:5, 10, replace = TRUE)
gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156)
# Fit the GGUM:
fit2 <- GGUM(gen2$data, C)
# Estimate the theta parameters:
Theta.EAP(fit2)
## End(Not run)