GenData.GGUM {GGUM} | R Documentation |
Generate data from the GUM/GGUM
Description
GenData.GGUM
generates all model parameters (items and
persons) and item scores.
Usage
GenData.GGUM(N, I, C, model = "GGUM", seed = 123)
Arguments
N |
Number of persons (rows). |
I |
Number of items (columns). |
C |
|
model |
A string identifying the model. Possible values are "GUM" or "GGUM" (default). |
seed |
An integer, allowing the user to control the generation process (for replication purposes). |
Value
The function returns a list with five elements:
alpha.gen |
The discrimination parameters. |
delta.gen |
The difficulty parameters. |
taus.gen |
The threshold parameters. |
theta.gen |
The person parameters. |
data |
The (NxI) data matrix. The item scores are coded 0, 1, ..., C for an item with (C+1) observable response categories. |
Details
The generalized graded unfolding model (GGUM; Roberts & Laughlin, 1996; Roberts et al., 2000) is given by
P(Z_i=z|\theta_n) =
\frac{f(z) + f(M-z)}{\sum_{w=0}^C\left[f(w)+f(M-w)\right]},
f(w) = exp\left\{\alpha_i\left[w(\theta_n-\delta_i)-
\sum_{k=0}^w\tau_{ik}\right]\right\},
where:
The subscripts
i
andn
identify the item and person, respectively.-
z=0,\ldots,C
denotes the observed answer response. -
M = 2C + 1
is the number of subjective response options minus 1. -
\theta_n
is the latent trait score for personn
. -
\alpha_i
is the item slope (discrimination). -
\delta_i
is the item location. -
\tau_{ik}
(k=1,\ldots,M
) are the threshold parameters.
Parameter \tau_{i0}
is arbitrarily constrained to zero and
the threshold parameters are constrained to symmetry around zero, that is,
\tau_{i(C+1)}=0
and
\tau_{iz}=-\tau_{i(M-z+1)}
for
z\not= 0
.
Parameters \alpha_i
are randomly uniformly drawn from the
(.5, 2) interval. Parameters \delta_i
are randomly drawn
from the standard normal distribution bounded between -2
and 2. The
threshold parameters are generated following the same procedure of Roberts,
Donoghue, and Laughlin (2002). Finally, the person parameters are randomly
drawn from the standard normal distribution.
If model = "GUM"
the data based on the GUM (Roberts and Laughlin,
1996) model are generated. The GUM is a constrained version of the GGUM,
where all discrimination parameters are equal to 1 and the item thresholds
are shared by all items.
Author(s)
Jorge N. Tendeiro, tendeiro@hiroshima-u.ac.jp
Examples
gen1 <- GenData.GGUM(500, 10, 5, seed = 456)
gen1$data # Retrieve the data.
gen1$alpha.gen # The discrimination parameters.
# Generate data based on items varying in the number of observable response categories:
gen2 <- GenData.GGUM(500, 5, c(5, 5, 5, 4, 4), seed = 789)