selectQE {GGMselect} | R Documentation |
Estimate a graph in a Gaussian Graphical Model: Quasi Exhaustive search
Description
Select a graph within the family of graphs QE
Usage
selectQE(X, dmax=min(3,nrow(X)-3,ncol(X)-1), K=2.5,
min.ev=10**(-8), max.iter=10**6, max.nG=10**8, max.size=10**8,
verbose=FALSE)
Arguments
X |
|
dmax |
integer or |
K |
scalar or vector with values greater than 1. Tuning parameter in the penalty function. |
min.ev |
minimum eigenvalue for matrix inversion. |
max.iter |
integer. Maximum number of stepwise iterations. |
max.nG |
integer. Maximum number of graphs considered in the exhaustive search. Stepwise procedure beyond. |
max.size |
integer. Maximum number of calculations of the residuals sums of squares. Execution stopped beyond. |
verbose |
logical. If |
Details
More details are available on ../doc/Notice.pdf
Value
Neighb |
array of dimension |
crit.min |
vector of dimension |
G |
array of dimension |
Author(s)
Bouvier A, Giraud C, Huet S, Verzelen N.
References
Please use citation("GGMselect")
.
See Also
selectFast
, selectMyFam
,
simulateGraph
, penalty
,
convertGraph
Examples
p=30
n=30
# simulate graph
eta=0.11
Gr <- simulateGraph(p,eta)
# simulate data
X <- rmvnorm(n, mean=rep(0,p), sigma=Gr$C)
# estimate graph
## Not run: GQE <- selectQE(X)
# plot the result
## Not run: library(network)
## Not run: par(mfrow=c(1,2))
## Not run: gV <- network(Gr$G)
## Not run: plot(gV,jitter=TRUE, usearrows = FALSE, label=1:p,displaylabels=TRUE)
## Not run: gQE <- network(GQE$G)
## Not run: plot(gQE, jitter=TRUE, usearrows = FALSE, label=1:p,displaylabels=TRUE)