selectFast {GGMselect} | R Documentation |
Estimate a graph in a Gaussian Graphical Model: Fast procedure
Description
Select a graph within the (data-driven) families of graphs EW
, C01
, and LA
.
Usage
selectFast(X, dmax=min(floor(nrow(X)/3),nrow(X)-3,ncol(X)-1),
K=2.5, family="EW",
min.ev=10**(-8), max.iter=200, eps=0.01,
beta=nrow(X)*nrow(X)/2, tau=1/sqrt(nrow(X)*(ncol(X)-1)), h=0.001, T0=10,
verbose=FALSE )
Arguments
X |
|
dmax |
integer or |
K |
scalar or vector with values greater than 1. Tuning parameter of the penalty function. |
family |
character string or vector of character strings, among |
min.ev |
minimum eigenvalue for matrix inversion. |
max.iter , eps , beta , tau , h , T0 |
tuning parameters for the
Langevin Monte Carlo algorithm. Only used when
|
verbose |
logical. If |
Details
More details are available on ../doc/Notice.pdf
Value
A list with components "EW"
, "LA"
, "C01"
,
"C01.LA"
and "C01.LA.EW"
, according to the
family
argument, each one with components:
Neighb |
array of dimension |
crit.min |
vector of dimension |
G |
array of dimension |
Author(s)
Bouvier A, Giraud C, Huet S, Verzelen N.
References
Please use citation("GGMselect")
.
See Also
selectQE
, selectMyFam
,
simulateGraph
, penalty
,
convertGraph
Examples
p=30
n=30
# simulate graph
eta=0.11
Gr <- simulateGraph(p,eta)
# simulate data
X <- rmvnorm(n, mean=rep(0,p), sigma=Gr$C)
# estimate graph
GRest <- selectFast(X, family="C01")
# plot result
library(network)
par(mfrow=c(1,2))
gV <- network(Gr$G)
plot(gV,jitter=TRUE, usearrows = FALSE, label=1:p,displaylabels=TRUE)
g <- network(GRest$C01$G)
plot(g, jitter=TRUE, usearrows = FALSE, label=1:p,displaylabels=TRUE)