ne.lambda.cv {GGMridge} | R Documentation |
Choose the Tuning Parameter of a Ridge Regression Using Cross-Validation
Description
Choose the tuning parameter of a ridge regression using cross-validation.
Usage
ne.lambda.cv(y, x, lambda, fold)
Arguments
y |
Length n response vector. |
x |
n x p matrix for covariates with p variables and n sample size. |
lambda |
A numeric vector for candidate tuning parameters for a ridge regression. |
fold |
fold-cross validation used to choose the tuning parameter. |
Value
A list containing
lambda |
The selected tuning parameter, which minimizes the prediction error. |
spe |
The prediction error for all of the candidate lambda values. |
Author(s)
Min Jin Ha
References
Ha, M. J. and Sun, W. (2014). Partial correlation matrix estimation using ridge penalty followed by thresholding and re-estimation. Biometrics, 70, 762–770.
Examples
p <- 100 # number of variables
n <- 50 # sample size
###############################
# Simulate data
###############################
simulation <- simulateData(G = p, etaA = 0.02, n = n, r = 1)
data <- simulation$data[[1L]]
stddat <- scale(x = data, center = TRUE, scale = TRUE)
X <- stddat[,-1L,drop = FALSE]
y <- stddat[,1L]
fit.lambda <- ne.lambda.cv(y = y,
x = X,
lambda = seq(from = 0.01, to = 1,by = 0.1),
fold = 10L)
lambda <- fit.lambda$lambda[which.min(fit.lambda$spe)]
[Package GGMridge version 1.4 Index]