lambda.pcut.cv {GGMridge} | R Documentation |
Choose the Tuning Parameter of the Ridge Inverse and Thresholding Level of the Empirical p-Values
Description
Choose the tuning parameter of the ridge inverse and p-value cutoff by minimizing cross validation estimates of the total prediction errors of the p separate ridge regressions.
Usage
lambda.pcut.cv(x, lambda, pcut, fold = 10L)
Arguments
x |
n by p data matrix. |
lambda |
A vector of candidate tuning parameters. |
pcut |
A vector of candidate cutoffs of pvalues. |
fold |
fold-cross validation is performed. |
Value
The total prediction errors for all lambda (row-wise) and pcut (column-wise)
Author(s)
Min Jin Ha
References
Ha, M. J. and Sun, W. (2014). Partial correlation matrix estimation using ridge penalty followed by thresholding and re-estimation. Biometrics, 70, 762–770.
Examples
p <- 100 # number of variables
n <- 50 # sample size
###############################
# Simulate data
###############################
simulation <- simulateData(G = p, etaA = 0.02, n = n, r = 1)
data <- simulation$data[[1L]]
stddata <- scale(x = data, center = TRUE, scale = TRUE)
###############################
# Selection of a lambda and a
# p-value cutoff
###############################
lambda.array <- seq(from = 0.1, to = 5, length = 10) * (n-1.0)
pcut.array <- seq(from = 0.01, to = 0.05, by = 0.01)
tpe <- lambda.pcut.cv(x = stddata,
lambda = lambda.array,
pcut = pcut.array,
fold = 3L)
w.mintpe <- which(tpe == min(tpe), arr.ind = TRUE)
lambda <- lambda.array[w.mintpe[1L]]
alpha <- pcut.array[w.mintpe[2L]]
[Package GGMridge version 1.4 Index]