R.separate.ridge {GGMridge} | R Documentation |
Estimation of Partial Correlation Matrix Using p Separate Ridge Regressions.
Description
The partial correlation matrix is estimated by p separate ridge regressions with the parameters selected by cross validation.
Usage
R.separate.ridge(x, fold, lambda, verbose = FALSE)
Arguments
x |
n x p data matrix; n is the # of samples and p is the # of variables. |
fold |
Ridge parameters are selected by fold-cross validations separately for each regression. |
lambda |
The candidate ridge parameters for all p ridge regressions. |
verbose |
TRUE/FALSE; if TRUE, print the procedure. |
Value
A list containing
R |
The partial correlation matrix. |
lambda.sel |
The selected tuning parameters for p ridge regressions. |
Author(s)
Min Jin Ha
References
Ha, M. J. and Sun, W. (2014). Partial correlation matrix estimation using ridge penalty followed by thresholding and re-estimation. Biometrics, 70, 762–770.
Examples
p <- 100 # number of variables
n <- 50 # sample size
###############################
# Simulate data
###############################
simulation <- simulateData(G = p, etaA = 0.02, n = n, r = 1)
data <- simulation$data[[1L]]
stddata <- scale(x = data, center = TRUE, scale = FALSE)
###############################
# estimate ridge parameter
###############################
w.upper <- which(upper.tri(diag(p)))
lambda.array <- seq(from = 0.1, to = 20, by=0.1) * (n-1.0)
partial.sep <- R.separate.ridge(x = stddata,
lambda = lambda.array,
fold = 5L,
verbose = TRUE)$R[w.upper]
[Package GGMridge version 1.4 Index]