GGIR {GGIR} | R Documentation |
Shell function for analysing an accelerometer dataset.
Description
This function is designed to help users operate all steps of the analysis. It helps to generate and structure milestone data, and produces user-friendly reports. The function acts as a shell with calls to g.part1, g.part2, g.part3, g.part4 and g.part5.
Usage
GGIR(mode = 1:5,
datadir = c(),
outputdir = c(),
studyname = c(),
f0 = 1, f1 = 0,
do.report = c(2, 4, 5, 6),
configfile = c(),
myfun = c(),
verbose = TRUE, ...)
Arguments
mode |
Numeric (default = 1:5). Specify which of the five parts need to be run, e.g., mode = 1 makes that g.part1 is run; or mode = 1:5 makes that the whole GGIR pipeline is run, from g.part1 to g.part5. Optionally mode can also include the number 6 to tell GGIR to run g.part6 which is currently under development. |
datadir |
Character (default = c()). Directory where the accelerometer files are stored, e.g., "C:/mydata", or list of accelerometer filenames and directories, e.g. c("C:/mydata/myfile1.bin", "C:/mydata/myfile2.bin"). |
outputdir |
Character (default = c()). Directory where the output needs to be stored. Note that this function will attempt to create folders in this directory and uses those folder to keep output. |
studyname |
Character (default = c()). If the datadir is a folder, then the study will be given the name of the data directory. If datadir is a list of filenames then the studyname as specified by this input argument will be used as name for the study. |
f0 |
Numeric (default = 1). File index to start with (default = 1). Index refers to the filenames sorted in alphabetical order. |
f1 |
Numeric (default = 0). File index to finish with (defaults to number of files available). |
do.report |
Numeric (default = c(2, 4, 5, 6)). For which parts to generate a summary spreadsheet: 2, 4, 5, and/or 6. Default is c(2, 4, 5, 6). A report will be generated based on the available milestone data. When creating milestone data with multiple machines it is advisable to turn the report generation off when generating the milestone data, value = c(), and then to merge the milestone data and turn report generation back on while setting overwrite to FALSE. |
configfile |
Character (default = c()). Configuration file previously generated by function GGIR. See details. |
myfun |
List (default = c()). External function object to be applied to raw data. See package vignette for detailed tutorial with examples on how to use the function embedding: https://cran.r-project.org/package=GGIR/vignettes/ExternalFunction.html |
verbose |
Boolean (default = TRUE). to indicate whether console message should be printed. Note that warnings and error are always printed and can be suppressed with suppressWarning() or suppressMessages(). |
... |
Any of the parameters used GGIR. Given the large number of parameters used in GGIR we have grouped them in objects that start with "params_". These are documented in the details section. You cannot provide these objects as argument to function GGIR, but you can provide the parameters inside them as input to function GGIR. |
Details
Once you have used function GGIR and the output directory (outputdir) will be filled
with milestone data and results. Function GGIR stores all the explicitely
entered argument values and default values for the argument that are not explicitely
provided in a csv-file named config.csv stored in the root of the output folder.
The config.csv file is accepted as input to GGIR with argument configfile
to replace the specification of all the arguments, except datadir
and outputdir
.
The practical value of this is that it eases the replication of analysis, because instead of having to share you R script, sharing your config.csv file will be sufficient. Further, the config.csv file contribute to the reproducibility of your data analysis.
Note: When combining a configuration file with explicitely provided argument
values, the explicitely provided argument values will overrule
the argument values in the configuration file. If a parameter is neither provided
via the configuration file nor as input then GGIR uses its default paramter values which
can be inspected with command print(load_params())
, and if you are specifically
interested in a certain subgroup of parameters, e.g., physical activity, then you
can do print(load_params()$params_phyact)
. These defaults are part of the GGIR
code and cannot be changed by the user.
The parameters that can be used in GGIR are:
params_general
A list of parameters used across all GGIR parts that do not fall in any of the other categories.
- overwrite
-
Boolean (default = FALSE). Do you want to overwrite analysis for which milestone data exists? If overwrite = FALSE, then milestone data from a previous analysis will be used if available and visual reports will not be created again.
- dayborder
-
Numeric (default = 0). Hour at which days start and end (dayborder = 4 would mean 4 am).
- do.parallel
-
Boolean (default = TRUE). Whether to use multi-core processing (only works if at least 4 CPU cores are available).
- maxNcores
-
Numeric (default = NULL). Maximum number of cores to use when argument do.parallel is set to true. GGIR by default uses either the maximum number of available cores or the number of files to process (whichever is lower), but this argument allows you to set a lower maximum.
- acc.metric
-
Character (default = "ENMO"). Which one of the acceleration metrics do you want to use for all acceleration magnitude analyses in GGIR part 5 and the visual report? For example: "ENMO", "LFENMO", "MAD", "NeishabouriCount_y", or "NeishabouriCount_vm". Only one acceleration metric can be specified and the selected metric needs to have been calculated in part 1 (see g.part1) via arguments such as
do.enmo = TRUE
ordo.mad = TRUE
. - part5_agg2_60seconds
-
Boolean (default = FALSE). Whether to use aggregate epochs to 60 seconds as part of the GGIR g.part5 analysis. Aggregation is doen by averaging. Note that when working with count metrics such as Neishabouri counts this means that the threshold can stay the same as in part 2, because again the threshold is expressed relative to the original epoch size, even if averaged per minute. For example if we want to use a cut-point 100 count per minute then we specify
mvpathreshold = 100 * (5/60)
as well as 'threshold.mod =100 * (5/60)
regardless of whether we set part5_agg2_60seconds to TRUE or FALSE. - print.filename
-
Boolean (default = FALSE). Whether to print the filename before analysing it (in case do.parallel = FALSE). Printing the filename can be useful to investigate problems (e.g., to verify that which file is being read).
- desiredtz
-
Character (default = "", i.e., system timezone). Timezone in which device was configured and experiments took place. If experiments took place in a different timezone, then use this argument for the timezone in which the experiments took place and argument
configtz
to specify where the device was configured. Use the "TZ identifier" as specified at https://en.wikipedia.org/wiki/Zone.tab to set desiredtz, e.g., "Europe/London". - configtz
-
Character (default = "", i.e., system timezone). At the moment only functional for GENEActiv .bin, AX3 cwa, ActiGraph .gt3x, and ad-hoc csv file format. Timezone in which the accelerometer was configured. Only use this argument if the timezone of configuration and timezone in which recording took place are different. Use the "TZ identifier" as specified at https://en.wikipedia.org/wiki/Zone.tab to set configtz, e.g., "Europe/London".
- sensor.location
-
Character (default = "wrist"). To indicate sensor location, default is wrist. If it is hip, the HDCZA algorithm for sleep detection also requires longitudinal axis of sensor to be between -45 and +45 degrees.
- windowsizes
-
Numeric vector, three values (default = c(5, 900, 3600)). To indicate the lengths of the windows as in c(window1, window2, window3): window1 is the short epoch length in seconds, by default 5, and this is the time window over which acceleration and angle metrics are calculated; window2 is the long epoch length in seconds for which non-wear and signal clipping are defined, default 900 (expected to be a multitude of 60 seconds); window3 is the window length of data used for non-wear detection and by default 3600 seconds. So, when window3 is larger than window2 we use overlapping windows, while if window2 equals window3 non-wear periods are assessed by non-overlapping windows.
- idloc
-
Numeric (default = 1). If idloc = 1 the code assumes that ID number is stored in the obvious header field. Note that for ActiGraph data the ID is never stored in the file header. For value set to 2, 5, 6, and 7, GGIR looks at the filename and extracts the character string preceding the first occurance of a "_" (idloc = 2), " " (space, idloc = 5), "." (dot, idloc = 6), and "-" (idloc = 7), respectively. You may have noticed that idloc 3 and 4 are skipped, they were used for one study in 2012, and not actively maintained anymore, but because it is legacy code not omitted.
- expand_tail_max_hours
-
Numeric (default = NULL). This parameter has been replaced by
recordingEndSleepHour
. - recordingEndSleepHour
-
Numeric (default = NULL). Time (in hours) at which the recording should end (or later) to expand the g.part1 output with synthetic data to trigger sleep detection for last night. Using argument
recordingEndSleepHour
implies the assumption that the participant fell asleep at or before the end of the recording if the recording ended at or afterrecordingEndSleepHour
hour of the last day. This assumption may not always hold true and should be used with caution. The synthetic data for metashort entails: timestamps continuing regularly, zeros for acceleration metrics other than EN, one for EN. Angle columns are created in a way that it triggers the sleep detection using the equation:round(sin((1:length_expansion) / (900/epochsize))) * 15
. To keep track of the tail expansion g.part1 stores the length of the expansion in the RData files, which is then passed via g.part2, g.part3, and g.part4 to g.part5. In g.part5 the tail expansion size is included as an additional variable in the csv-reports. In the g.part4 csv-report the last night is omitted, because we know that sleep estimates from the last night will not be trustworthy. Similarly, in the g.part5 output columns related to the sleep assessment will be omitted for the last window to avoid biasing the averages. Further, the synthetic data are also ignored in the visualizations and time series output to avoid biased output. - dataFormat
-
Character (default = "raw"). To indicate what the format is of the data in datadir. Alternatives: ukbiobank_csv, actiwatch_csv, actiwatch_awd, actigraph_csv, and sensewear_xls, which correspond to epoch level data files from, respecitively, UK Biobank in csv format, Actiwatch in csv format, Actiwatch in awd format, ActiGraph csv format, and Sensewear in xls format (also works with xlsx). Here, the assumed epoch size for UK Biobank csvdata is 5 seconds. The epoch size for the other non-raw data formats is flexible, but make sure that you set first value of argument
windowsizes
accordingly. Also when working with non-raw data formats specify argumentextEpochData_timeformat
as documented below. For ukbiobank_csv nonwear is a column in the data itself, for actiwatch_csv, actiwatch_awd, actigraph_csv, and sensewear_xls non-wear is detected as 60 minute rolling zeros. The length of this window can be modified with the third value of argumentwindowsizes
expressed in seconds. - maxRecordingInterval
-
Numeric (default = NULL). To indicate the maximum gap in hours between repeated measurements with the same ID for the recordings to be appended. So, the assumption is that the ID can be matched, make sure argument
idloc
is set correctly. If argumentmaxRecordingInterval
is set to NULL (default) recordings are not appended. If recordings overlap then GGIR will use the data from the latest recording. If recordings are separated then the timegap between the recordings is filled with data points that resemble monitor not worn. The maximum value of maxFile gap is 504 (21 days). Only recordings from the same accelerometer brand are appended. The part 2 csv report will show number of appended recordings, sampling rate for each, time overlap or gap and the names of the filenames of the respective recording. - extEpochData_timeformat
-
Character (default = "%d-%m-%Y %H:%M:%S"). To specify the time format used in the external epoch level data when argument
dataFormat
is set to "actiwatch_csv", "actiwatch_awd", "actigraph_csv" or "sensewear_xls". For example "%Y-%m-%d %I:%M:%S %p" for "2023-07-11 01:24:01 PM" or "%m/%d/%Y %H:%M:%S" "2023-07-11 13:24:01"
params_rawdata
A list of parameters used to related to reading and pre-processing raw data, excluding parameters related to metrics as those are in the params_metrics object.
- backup.cal.coef
-
Character (default = "retrieve"). Option to use backed-up calibration coefficient instead of deriving the calibration coefficients when analysing the same file twice. Argument backup.cal.coef has two usecase. Use case 1: If the auto-calibration fails then the user has the option to provide back-up calibration coefficients via this argument. The value of the argument needs to be the name and directory of a csv-spreadsheet with the following column names and subsequent values: "filename" with the names of accelerometer files on which the calibration coefficients need to be applied in case auto-calibration fails; "scale.x", "scale.y", and "scale.z" with the scaling coefficients; "offset.x", "offset.y", and "offset.z" with the offset coefficients, and; "temperature.offset.x", "temperature.offset.y", and "temperature.offset.z" with the temperature offset coefficients. This can be useful for analysing short lasting laboratory experiments with insufficient sphere data to perform the auto-calibration, but for which calibration coefficients can be derived in an alternative way. It is the users responsibility to compile the csv-spreadsheet. Instead of building this file the user can also Use case 2: The user wants to avoid performing the auto-calibration repeatedly on the same file. If backup.cal.coef value is set to "retrieve" (default) then GGIR will look out for the "data_quality_report.csv" file in the outputfolder QC, which holds the previously generated calibration coefficients. If you do not want this happen, then deleted the data_quality_report.csv from the QC folder or set it to value "redo".
- minimumFileSizeMB
-
Numeric (default = 2). Minimum File size in MB required to enter processing. This argument can help to avoid having short uninformative files to enter the analyses. Given that a typical accelerometer collects several MBs per hour, the default setting should only skip the very tiny files.
- do.cal
-
Boolean (default = TRUE). Whether to apply auto-calibration or not by g.calibrate. Recommended setting is TRUE.
- imputeTimegaps
-
Boolean (default = TRUE). To indicate whether timegaps larger than 1 sample should be imputed. Currently only used for .gt3x data and ActiGraph .csv format, where timegaps can be expected as a result of Actigraph's idle sleep.mode configuration.
- spherecrit
-
Numeric (default = 0.3). The minimum required acceleration value (in g) on both sides of 0 g for each axis. Used to judge whether the sphere is sufficiently populated
- minloadcrit
-
Numeric (default = 168). The minimum number of hours the code needs to read for the autocalibration procedure to be effective (only sensitive to multitudes of 12 hrs, other values will be ceiled). After loading these hours only extra data is loaded if calibration error has not been reduced to under 0.01 g.
- printsummary
-
Boolean (default = FALSE). If TRUE will print a summary of the calibration procedure in the console when done.
- chunksize
-
Numeric (default = 1). Value to specify the size of chunks to be loaded as a fraction of an approximately 12 hour period for auto-calibration procedure and as fraction of 24 hour period for the metric calculation, e.g., 0.5 equals 6 and 12 hour chunks, respectively. For machines with less than 4Gb of RAM memory or with < 2GB memory per process when using
do.parallel = TRUE
a value below 1 is recommended. The value is constrained by GGIR to not be lower than 0.05. Please note that setting 0.05 will not produce output when 3rd value of parameter windowsizes is 3600. - dynrange
-
Numeric (default = NULL). Provide dynamic range of 8 gravity.
- interpolationType
-
Integer (default = 1). To indicate type of interpolation to be used when resampling time series (mainly relevant for Axivity sensors), 1=linear, 2=nearest neighbour.
- rmc.file
-
Character (default = NULL). Filename of file to be read if it is in the working directory, or full path to the file otherwise.
- rmc.nrow
-
Numeric (default = NULL). Number of rows to read, same as nrow argument in read.csv and nrows in fread. The whole file is read by default (i.e., rmc.nrow = Inf).
- rmc.skip
-
Numeric (default = 0). Number of rows to skip, same as skip argument in read.csv and in fread.
- rmc.dec
-
Character (default = "."). Decimal used for numbers, same as dec argument in read.csv and in fread.
- rmc.firstrow.acc
-
Numeric (default = NULL). First row (number) of the acceleration data.
- rmc.firstrow.header
-
Numeric (default = NULL). First row (number) of the header. Leave blank if the file does not have a header.
- rmc.header.length
-
Numeric (default = NULL). If file has header, specify header length (number of rows).
- rmc.col.acc
-
Numeric, three values (default = c(1, 2, 3)). Vector with three column (numbers) in which the acceleration signals are stored.
- rmc.col.temp
-
Numeric (default = NULL). Scalar with column (number) in which the temperature is stored. Leave in default setting if no temperature is available. The temperature will be used by g.calibrate.
- rmc.col.time
-
Numeric (default = NULL). Scalar with column (number) in which the timestamps are stored. Leave in default setting if timestamps are not stored.
- rmc.unit.acc
-
Character (default = "g"). Character with unit of acceleration values: "g", "mg", or "bit".
- rmc.unit.temp
-
Character (default = "C"). Character with unit of temperature values: (K)elvin, (C)elsius, or (F)ahrenheit.
- rmc.unit.time
-
Character (default = "POSIX"). Character with unit of timestamps: "POSIX", "UNIXsec" (seconds since origin, see argument
rmc.origin
), "character", or "ActivPAL" (exotic timestamp format only used in the ActivPAL activity monitor). - rmc.format.time
-
Character (default = " Character giving a date-time format as used by strptime. Only used for rmc.unit.time: character and POSIX.
- rmc.bitrate
-
Numeric (default = NULL). If unit of acceleration is a bit then provide bit rate, e.g., 12 bit.
- rmc.dynamic_range
-
Numeric or character (default = NULL). If unit of acceleration is a bit then provide dynamic range deviation in g from zero, e.g., +/-6g would mean this argument needs to be 6. If you give this argument a character value the code will search the file header for elements with a name equal to the character value and use the corresponding numeric value next to it as dynamic range.
- rmc.unsignedbit
-
Boolean (default = TRUE). If unsignedbit = TRUE means that bits are only positive numbers. if unsignedbit = FALSE then bits are both positive and negative.
- rmc.origin
-
Character (default = "1970-01-01"). Origin of time when unit of time is UNIXsec, e.g., 1970-1-1.
- rmc.desiredtz
-
Character (default = NULL). Timezone in which experiments took place. This argument is scheduled to be deprecated and is now used to overwrite
desiredtz
if not provided. - rmc.configtz
-
Character (default = NULL). Timezone in which device was configured. This argument is scheduled to be deprecated and is now used to overwrite
configtz
if not provided. - rmc.sf
-
Numeric (default = NULL). Sample rate in Hertz, if this is stored in the file header then that will be used instead (see argument
rmc.headername.sf
). - rmc.headername.sf
-
Character (default = NULL). If file has a header: Row name under which the sample frequency can be found.
- rmc.headername.sn
-
Character (default = NULL). If file has a header: Row name under which the serial number can be found.
- rmc.headername.recordingid
-
Character (default = NULL). If file has a header: Row name under which the recording ID can be found.
- rmc.header.structure
-
Character (default = NULL). Used to split the header name from the header value, e.g., ":" or " ".
- rmc.check4timegaps
-
Boolean (default = FALSE). To indicate whether gaps in time should be imputed with zeros. Some sensing equipment provides accelerometer with gaps in time. The rest of GGIR is not designed for this, by setting this argument to TRUE the gaps in time will be filled with zeros.
- rmc.col.wear
-
Numeric (default = NULL). If external wear detection outcome is stored as part of the data then this can be used by GGIR. This argument specifies the column in which the wear detection (Boolean) is stored.
- rmc.doresample
-
Boolean (default = FALSE). To indicate whether to resample the data based on the available timestamps and extracted sample rate from the file header.
- rmc.noise
-
Numeric (default = 13). Noise level of acceleration signal in mg-units, used when working ad-hoc .csv data formats using read.myacc.csv. The read.myacc.csv does not take rmc.noise as argument, but when interacting with GGIR or g.part1 rmc.noise is used.
- rmc.scalefactor.acc
-
Numeric value (default 1) to scale the acceleration signals via multiplication. For example, if data is provided in m/s2 then by setting this to 1/9.81 we would derive gravitational units.
- frequency_tol
-
Number (default = 0.1) as passed on to readAxivity from the GGIRread package. Represents the frequency tolerance as fraction between 0 and 1. When the relative bias per data block is larger than this fraction then the data block will be imputed by lack of movement with gravitational oriationed guessed from most recent valid data block. Only applicable to Axivity .cwa data.
params_metrics
A list of parameters used to specify the signal metrics that need to be extract in GGIR g.part1.
- do.anglex
-
Boolean (default = FALSE). If TRUE, calculates the angle of the X axis relative to the horizontal:
angleX = (\tan{^{-1}\frac{acc_{rollmedian(x)}}{(acc_{rollmedian(y)})^2 + (acc_{rollmedian(z)})^2}}) * 180/\pi
- do.angley
-
Boolean (default = FALSE). If TRUE, calculates the angle of the Y axis relative to the horizontal:
angleY = (\tan{^{-1}\frac{acc_{rollmedian(y)}}{(acc_{rollmedian(x)})^2 + (acc_{rollmedian(z)})^2}}) * 180/\pi
- do.anglez
-
Boolean (default = TRUE). If TRUE, calculates the angle of the Z axis relative to the horizontal:
angleZ = (\tan{^{-1}\frac{acc_{rollmedian(z)}}{(acc_{rollmedian(x)})^2 + (acc_{rollmedian(y)})^2}}) * 180/\pi
- do.zcx
-
Boolean (default = FALSE). If TRUE, calculates metric zero-crossing count for x-axis. For computation specifics see source code of function g.applymetrics
- do.zcy
-
Boolean (default = FALSE). If TRUE, calculates metric zero-crossing count for y-axis. For computation specifics see source code of function g.applymetrics
- do.zcz
-
Boolean (default = FALSE). If TRUE, calculates metric zero-crossing count for z-axis. For computation specifics see source code of function g.applymetrics
- do.enmo
-
Boolean (default = TRUE). If TRUE, calculates the metric:
ENMO = \sqrt{acc_x^2 + acc_y^2 + acc_z^2} - 1
(if ENMO < 0, then ENMO = 0).
- do.lfenmo
-
Boolean (default = FALSE). If TRUE, calculates the metric
ENMO
over the low-pass filtered accelerations (for computation specifics see source code of function g.applymetrics). The filter bound is defined by the parameterhb
. - do.en
-
Boolean (default = FALSE). If TRUE, calculates the Euclidean Norm of the raw accelerations:
EN = \sqrt{acc_x^2 + acc_y^2 + acc_z^2}
- do.mad
-
Boolean (default = FALSE). If TRUE, calculates the Mean Amplitude Deviation:
MAD = \frac{1}{n}\Sigma|r_i - \overline{r}|
- do.enmoa
-
Boolean (default = FALSE). If TRUE, calculates the metric:
ENMOa = \sqrt{acc_x^2 + acc_y^2 + acc_z^2} - 1
(if ENMOa < 0, then ENMOa = |ENMOa|).
- do.roll_med_acc_x
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.roll_med_acc_y
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.roll_med_acc_z
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.dev_roll_med_acc_x
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.dev_roll_med_acc_y
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.dev_roll_med_acc_z
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.bfen
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.hfen
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.hfenplus
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.lfen
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.lfx
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.lfy
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.lfz
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.hfx
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.hfy
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.hfz
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.bfx
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.bfy
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.bfz
-
Boolean (default = FALSE). If TRUE, calculates the metric. For computation specifics see source code of function g.applymetrics.
- do.brondcounts
-
Boolean (default = FALSE). this option has been deprecated (October 2022) due to issues with the activityCounts package that we used as a dependency. If TRUE, calculated the metric via R package activityCounts. We called them BrondCounts because there are large number of activity counts in the physical activity and sleep research field. By calling them _brondcounts_ we clarify that these are the counts proposed by Jan Brønd and implemented in R by Ruben Brondeel. The _brondcounts_ are intended to be an imitation of the counts produced by one of the closed source ActiLife software by ActiGraph.
- do.neishabouricounts
-
Boolean (default = FALSE). If TRUE, calculates the metric via R package actilifecounts, which is an implementation of the algorithm used in the closed-source software ActiLife by ActiGraph (methods published in doi: 10.1038/s41598-022-16003-x). We use the name of the first author (instead of ActiLifeCounts) of the paper and call them NeishabouriCount under the uncertainty that ActiLife will implement this same algorithm over time. To use the Neishabouri counts for the physical activity intensity classification in part 5 (i.e., metric over the threshold.lig, threshold.mod, and threshold.vig would be applied), the
acc.metric
argument needs to be set as one of the following: "NeishabouriCount_x", "NeishabouriCount_y", "NeishabouriCount_z", "NeishabouriCount_vm" to use the counts in the x-, y-, z-axis or vector magnitude, respectively. - lb
-
Numeric (default = 0.2). Lower boundary of the frequency filter (in Hertz) as used in the filter-based metrics.
- hb
-
Numeric (default = 15). Higher boundary of the frequency filter (in Hertz) as used in the filter-based metrics.
- n
-
Numeric (default = n). Order of the frequency filter as used in the filter-based metrics.
- zc.lb
-
Numeric (default = 0.25). Used for zero-crossing counts only. Lower boundary of cut-off frequency filter.
- zc.hb
-
Numeric (default = 3). Used for zero-crossing counts only. Higher boundary of cut-off frequencies in filter.
- zc.sb
-
Numeric (default = 0.01). Stop band used for calculation of zero crossing counts. Value is the acceleration threshold in g units below which acceleration will be rounded to zero.
- zc.order
-
Numeric (default = 2). Used for zero-crossing counts only. Order of frequency filter.
- zc.scale
-
Numeric (default = 1) Used for zero-crossing counts only. Scaling factor to be applied after counts are calculated (GGIR part 3).
- actilife_LFE
-
Boolean (default = FALSE). If TRUE, calculates the NeishabouriCount metric with the low-frequency extension filter as proposed in the closed source ActiLife software by ActiGraph. Only applicable to the metric NeishabouriCount.
params_cleaning
A list of parameters used across all GGIR parts releated to masking or imputing data, abbreviated as "cleaning".
- do.imp
-
Boolean (default = TRUE). Whether to impute missing values (e.g., suspected of monitor non-wear or clippling) or not by g.impute in GGIR g.part2. Recommended setting is TRUE.
- TimeSegments2ZeroFile
-
Character (default = NULL). Takes path to a csv file that has columns "windowstart" and "windowend" to refer to the start and end time of a time windows in format "2024-10-12 20:00:00", and "filename" of the GGIR milestone data file without the "meta_" segment of the name. GGIR part 2 uses this to set all acceleration values to zero and the non-wear classification to zero (meaning sensor worn). Motivation: When the accelerometer is not worn during the night GGIR automatically labels them as invalid, while the user may like to treat them as zero movement. Disclaimer: This functionality was developed in 2019. With hindsight it is not generic enough and in need for revision. Please contact GGIR maintainers if you would like us to invest time in improving this functionality.
- data_cleaning_file
-
Character (default = NULL). Optional path to a csv file you create that holds four columns: ID, day_part5, relyonguider_part4, and night_part4. ID should hold the participant ID. Columns day_part5 and night_part4 allow you to specify which day(s) and night(s) need to be excluded from g.part5 and g.part4, respectively. When including multiple day(s)/night(s) create a new line for each day/night. So, this will be done regardless of whether the rest of GGIR thinks those day(s)/night(s) are valid. Column relyonguider_part4 allows you to specify for which nights g.part4 should fully rely on the guider. See also package vignette.
- excludefirstlast.part5
-
Boolean (default = FALSE). If TRUE then the first and last window (waking-waking, midnight-midnight, or sleep onset-onset) are ignored in g.part5.
- excludefirstlast
-
Boolean (default = FALSE). If TRUE then the first and last night of the measurement are ignored for the sleep assessment in g.part4.
- excludefirst.part4
-
Boolean (default = FALSE). If TRUE then the first night of the measurement are ignored for the sleep assessment in g.part4.
- excludelast.part4
-
Boolean (default = FALSE). If TRUE then the last night of the measurement are ignored for the sleep assessment in g.part4.
- includenightcrit
-
Numeric (default = 16). Minimum number of valid hours per night (24 hour window between noon and noon), used for sleep assessment in g.part4.
- minimum_MM_length.part5
-
Numeric (default = 23). Minimum length in hours of a MM day to be included in the cleaned g.part5 results.
- study_dates_file
-
Character (default = c()). Full path to csv file containing the first and last date of the expected wear period for every study participant (dates are provided per individual). Expected format of the activity diary is: First column headers followed by one row per recording. There should be three columns: first column is recording ID, which needs to match with the ID GGIR extracts from the accelerometer file; second column should contain the first date of the study; and third column the last date of the study. Date columns should be by default in format "23-04-2017", or in the date format specified by argument
study_dates_dateformat
(below). If not specified (default), then GGIR would use the first and last day of the recording as beginning and end of the study. Note that these dates are used on top of thedata_masking_strategy
selected. - study_dates_dateformat
-
Character (default = " To specify the date format used in the
study_dates_file
as used by strptime. - strategy
-
Deprecated and replaced by
data_masking_strategy
. Ifstrategy
is specified then its value is passed on and used fordata_masking_strategy
. - data_masking_strategy
-
Numeric (default = 1). How to deal with knowledge about study protocol. data_masking_strategy = 1 means select data based on
hrs.del.start
andhrs.del.end
. data_masking_strategy = 2 makes that only the data between the first midnight and the last midnight is used. data_masking_strategy = 3 selects the most active X days in the file where X is specified by argumentndayswindow
, where the days are a series of 24-h blocks starting any time in the day (X hours at the beginning and end of this period can be deleted with argumentshrs.del.start
andhrs.del.end
) data_masking_strategy = 4 to only use the data after the first midnight. data_masking_strategy = 5 is similar todata_masking_strategy = 3
, but it selects X complete calendar days where X is specified by argumentndayswindow
(X hours at the beginning and end of this period can be deleted with argumentshrs.del.start
andhrs.del.end
). - hrs.del.start
-
Numeric (default = 0). How many HOURS after start of experiment did wearing of monitor start? Used in GGIR g.part2 when
data_masking_strategy = 1
. - hrs.del.end
-
Numeric (default = 0). How many HOURS before the end of the experiment did wearing of monitor definitely end? Used in GGIR g.part2 when
data_masking_strategy = 1
. - maxdur
-
Numeric (default = 0). How many DAYS after start of experiment did experiment definitely stop? (set to zero if unknown).
- ndayswindow
-
Numeric (default = 7). If
data_masking_strategy
is set to 3 or 5, then this is the size of the window as a number of days. For data_masking_strategy 3 value can be fractional, e.g. 7.5, while for data_masking_strategy 5 it needs to be an integer. - includedaycrit.part5
-
Numeric (default = 2/3). Inclusion criteria used in part 5 for number of valid hours during the waking hours of a day, when value is smaller than or equal to 1 used as fraction of waking hours, when value above 1 used as absolute number of valid hours required. Do not confuse this argument with argument
includedaycrit
which is only used in GGIR part 2 and applies to the entire day. - segmentWEARcrit.part5
-
Numeric (default = 0.5). Fraction of
qwindow
segment expected to be valid in part 5, where 0.3 indicates that at least 30 percent of the time should be valid. - segmentDAYSPTcrit.part5
-
Numeric vector or length 2 (default = c(0.9, 0)). Inclusion criteria for the proportion of the segment that should be classified as day (awake) and spt (sleep period time) to be considered valid. If you are interested in comparing time spent in behaviour then it is better to set one of the two numbers to 0, and the other defines the proportion of the segment that should be classified as day or spt, respectively. The default setting would focus on waking hour segments and includes all segments that overlap for at least 90 percent with waking hours. In order to shift focus to the SPT you could use c(0, 0.9) which ensures that all segments that overlap for at least 90 percent with the SPT are included. Setting both to zero would be problematic when comparing time spent in behaviours between days or individuals: A complete segment would be averaged with an incomplete segments (someone going to bed or waking up in the middle of a segment) by which it is no longer clear whether the person is less active or sleeps more during that segment. Similarly it is not clear whether the person has more wakefulness during SPT for a segment or woke up or went to bed during the segment.
- includedaycrit
-
Numeric (default = 16). Minimum required number of valid hours in calendar day specific to analysis in part 2. If you specify two values as in c(16, 16) then the first value will be used in part 2 and the second value will be used in part 5 and applied as a criterion on the full part 5 window. Note that this is then applied in addition to parameter includedaycrit.part5 which only looks at valid data during waking hours.
- max_calendar_days
-
Numeric (default = 0). The maximum number of calendar days to include (set to zero if unknown).
- nonWearEdgeCorrection
-
Boolean (default = TRUE). If TRUE then the non-wear detection around the edges of the recording (first and last 3 hours) are corrected following description in vanHees2013 as has been the default since then. This functionality is advisable when working with sleep clinic or exercise lab data typically lasting less than a day.
- nonwear_approach
-
Character (default = "2023"). Whether to use the traditional version of the non-wear detection algorithm (nonwear_approach = "2013") or the new version (nonwear_approach = "2023"). The 2013 version would use the longsize window (windowsizes[3], one hour as default) to check the conditions for nonwear identification and would flag as nonwear the mediumsize window (windowsizes[2], 15 min as default) in the middle. The 2023 version differs in which it would flag as nonwear the full longsize window. For the 2013 method the longsize window is centered in the centre of the mediumsize window, while in the 2023 method the longsizewindow is aligned with its left edge to the left edge of the mediumsize window.
params_phyact
A list of parameters releated to physical activity as used in GGIR g.part2 and GGIR g.part5.
- mvpathreshold
-
Numeric (default = 100). Acceleration threshold for MVPA estimation in GGIR g.part2. This can be a single number or an vector of numbers, e.g.,
mvpathreshold = c(100, 120)
. In the latter case the code will estimate MVPA separately for each threshold. If this variable is left blank, e.g.,mvpathreshold = c()
, then MVPA is not estimated. - mvpadur
-
Numeric (default = 10). The bout duration(s) for which MVPA will be calculated. Only used in GGIR g.part2.
- boutcriter
-
Numeric (default = 0.8). A number between 0 and 1, it defines what fraction of a bout needs to be above the mvpathreshold, only used in GGIR g.part2.
- threshold.lig
-
Numeric (default = 40). In g.part5: Threshold for light physical activity to separate inactivity from light. Value can be one number or an vector of multiple numbers, e.g.,
threshold.lig =c(30,40)
. If multiple numbers are entered then analysis will be repeated for each combination of threshold values. Threshold is applied to the first metric in the milestone data, so if you have only specifieddo.enmo = TRUE
then it will be applied to ENMO. - threshold.mod
-
Numeric (default = 100). In g.part5: Threshold for moderate physical activity to separate light from moderate. Value can be one number or an vector of multiple numbers, e.g.,
threshold.mod = c(100, 120)
. If multiple numbers are entered then analysis will be repeated for each combination of threshold values. Threshold is applied to the first metric in the milestone data, so if you have only specifieddo.enmo = TRUE
then it will be applied to ENMO. - threshold.vig
-
Numeric (default = 400). In g.part5: Threshold for vigorous physical activity to separate moderate from vigorous. Value can be one number or an vector of multiple numbers, e.g.,
threshold.vig =c(400,500)
. If multiple numbers are entered then analysis will be repeated for each combination of threshold values. Threshold is applied to the first metric in the milestone data, so if you have only specifieddo.enmo = TRUE
then it will be applied to ENMO. - boutdur.mvpa
-
Numeric (default = c(1, 5, 10)). Duration(s) of MVPA bouts in minutes to be extracted. It will start with the identification of the longest to the shortest duration. In the default setting, it will start with the 10 minute bouts, followed by 5 minute bouts in the rest of the data, and followed by 1 minute bouts in the rest of the data.
- boutdur.in
-
Numeric (default = c(10, 20, 30)). Duration(s) of inactivity bouts in minutes to be extracted. Inactivity bouts are detected in the segments of the data which were not labelled as sleep or MVPA bouts. It will start with the identification of the longest to the shortest duration. In the default setting, it will start with the identification of 30 minute bouts, followed by 20 minute bouts in the rest of the data, and followed by 10 minute bouts in the rest of the data. Note that we use the term inactivity instead of sedentary behaviour for the lowest intensity level of behaviour. The reason for this is that GGIR does not attempt to classifying the activity type sitting at the moment, by which we feel that using the term sedentary behaviour would fail to communicate that.
- boutdur.lig
-
Numeric (default = c(1, 5, 10)). Duration(s) of light activity bouts in minutes to be extracted. Light activity bouts are detected in the segments of the data which were not labelled as sleep, MVPA, or inactivity bouts. It will start with the identification of the longest to the shortest duration. In the default setting, this will start with the identification of 10 minute bouts, followed by 5 minute bouts in the rest of the data, and followed by 1 minute bouts in the rest of the data.
- boutcriter.mvpa
-
Numeric (default = 0.8). A number between 0 and 1, it defines what fraction of a bout needs to be above the
threshold.mod
. - boutcriter.in
-
Numeric (default = 0.9). A number between 0 and 1, it defines what fraction of a bout needs to be below the
threshold.lig
. - boutcriter.lig
-
Numeric (default = 0.8). A number between 0 and 1, it defines what fraction of a bout needs to be between the
threshold.lig
and thethreshold.mod
. - frag.metrics
-
Character (default = NULL). Fragmentation metric to extract. Can be "mean", "TP", "Gini", "power", or "CoV", "NFragPM", or all the above metrics with "all". See package vignette for description of fragmentation metrics.
- part6_threshold_combi
-
Character (default = "40_100_120") to indicate the threshold combination derived in part 5 to be used for part 6
params_sleep
A list of parameters used to configure the sleep analysis as performend in GGIR g.part3 and g.part4.
- relyonguider
-
Boolean (default = FALSE). Sustained inactivity bouts (sib) that overlap with the guider are labelled as sleep. If
relyonguider = FALSE
and the sib overlaps only partially with the guider then it is the sib that defines the edge of the SPT window and not the guider. Ifrelyonguider = TRUE
and the sib overlaps only partially with the guider then it is the guider that defines the edge of the SPT window and not the sib. If participants were instructed NOT to wear the accelerometer during waking hours andignorenonware=FALSE
then set torelyonguider=TRUE
, in all other scenarios set to FALSE. - relyonsleeplog
-
Boolean (default = FALSE). Do not use, now replaced by argument relyonguider. Values provided to argument relyonsleeplog will be passed on to argument relyonguider to not preserve functionality of old R scripts.
- def.noc.sleep
-
Numeric (default = 1). The time window during which sustained inactivity will be assumed to represent sleep, e.g.,
def.noc.sleep = c(21, 9)
. This is only used if no sleep log entry is available. If left blankdef.noc.sleep = c()
then the 12 hour window centred at the least active 5 hours of the 24 hour period will be used instead. Here, L5 is hardcoded and will not change by changing argument winhr in function g.part2. If def.noc.sleep is filled with a single integer, e.g.,def.noc.sleep=c(1)
then the window will be detected with based on built in algorithms. See argumentHASPT.algo
from HASPT for specifying which of the algorithms to use. - sleepwindowType
-
Character (default = "SPT"). To indicate type of information in the sleeplog, "SPT" for sleep period time. Set to "TimeInBed" if sleep log recorded time in bed to enable calculation of sleep latency and sleep efficiency.
- nnights
-
Numeric (default = NULL). This argument has been deprecated.
- loglocation
-
Character (default = NULL). Path to csv file with sleep log information. See package vignette for how to format this file.
- colid
-
Numeric (default = 1). Column number in the sleep log spreadsheet in which the participant ID code is stored.
- coln1
-
Numeric (default = 2). Column number in the sleep log spreadsheet where the onset of the first night starts.
- ignorenonwear
-
Boolean (default = TRUE). If TRUE then ignore detected monitor non-wear periods to avoid confusion between monitor non-wear time and sustained inactivity.
- constrain2range
-
Deprecated, used to be a Boolean (default = TRUE) Whether or not to constrain the range of threshold used in the diary free sleep period time window detection.
- HASPT.algo
-
Character (default = "HDCZA"). To indicate what algorithm should be used for the sleep period time detection. Default "HDCZA" is Heuristic algorithm looking at Distribution of Change in Z-Angle as described in van Hees et al. 2018. Other options included: "HorAngle", which is based on HDCZA but replaces non-movement detection of the HDCZA algorithm by looking for time segments where the angle of the longitudinal sensor axis has an angle relative to the horizontal plane between -45 and +45 degrees. And "NotWorn" which is also the same as HDCZA but looks for time segments when a rolling average of acceleration magnitude is below 5 per cent of its standard deviation, see Cookbook vignette in the Annexes of https://wadpac.github.io/GGIR/ for more detailed guidance on how to use "NotWorn".
- HDCZA_threshold
-
Numeric (default = c()) If
HASPT.algo
is set to "HDCZA" and HDCZA_threshold is NOT NULL, (e.g., HDCZA_threshold = 0.2), then that value will be used as threshold in the 6th step in the diagram of Figure 1 in van Hees et al. 2018 Scientific Report (doi: 10.1038/s41598-018-31266-z). However, doing so has not been supported by research yet and is only intended to facilitate methodological research, so we advise sticking with the default in line with the publication. Further, if HDCZA_threshold is set to a numeric vector of length 2, e.g. c(10, 15), that will be used as percentile and multiplier for the above mentioned 6th step. - HASPT.ignore.invalid
-
Boolean (default = FALSE). To indicate whether invalid time segments should be ignored in the Sleep Period Time detection. If
FALSE
(default), the imputed angle or activity metric during the invalid time segments is used in the Sleep Period Time detection. IfTRUE
, invalid time segments are ignored for the Sleep Period Time detection (i.e., considered to be out of the Sleep Period Time). IfNA
, then invalid time segments are considered to be no movement segments. - HASIB.algo
-
Character (default = "vanHees2015"). To indicate which algorithm should be used to define the sustained inactivity bouts (i.e., likely sleep). Options: "vanHees2015", "Sadeh1994", "Galland2012".
- Sadeh_axis
-
Character (default = "Y"). To indicate which axis to use for the Sadeh1994 algorithm, and other algortihms that relied on count-based Actigraphy such as Galland2012.
- sleeplogsep
-
Character (default = NULL). This argument is deprecated.
- nap_model
-
Character (default = NULL). To specify classification model. Currently the only option is "hip3yr", which corresponds to a model trained with hip data in 3-3.5 olds trained with parent diary data.
- longitudinal_axis
-
Integer (default = NULL). To indicate which axis is the longitudinal axis. If not provided, the function will estimate longitudinal axis as the axis with the highest 24 hour lagged autocorrelation. Only used when
sensor.location = "hip"
orHASPT.algo = "HorAngle"
. - anglethreshold
-
Numeric (default = 5). Angle threshold (degrees) for sustained inactivity periods detection. The algorithm will look for periods of time (
timethreshold
) in which the angle variability is lower thananglethreshold
. This can be specified as multiple thresholds, each of which will be implemented, e.g.,anglethreshold = c(5,10)
. - timethreshold
-
Numeric (default = 5). Time threshold (minutes) for sustained inactivity periods detection. The algorithm will look for periods of time (
timethreshold
) in which the angle variability is lower thananglethreshold
. This can be specified as multiple thresholds, each of which will be implemented, e.g.,timethreshold = c(5,10)
. - possible_nap_window
-
Numeric (default = c(9, 18)). Numeric vector of length two with range in clock hours during which naps are assumed to take place, e.g.,
possible_nap_window = c(9, 18)
. Currently used in the context of an explorative nap classification algortihm that was trained in 3.5 year olds. - possible_nap_dur
-
Numeric (default = c(15, 240)). Numeric vector of length two with range in duration (minutes) of a nap, e.g.,
possible_nap_dur = c(15, 240)
. Currently used in the context of an explorative nap classification algortihm that was trained in 3.5 year olds. - sleepefficiency.metric
-
Numeric (default = 1). If 1 (default), sleep efficiency is calculated as detected sleep time during the SPT window divided by log-derived time in bed. If 2, sleep efficiency is calculated as detected sleep time during the SPT window divided by detected duration in sleep period time plus sleep latency (where sleep latency refers to the difference between time in bed and sleep onset). sleepefficiency.metric is only considered when argument
sleepwindowType = "TimeInBed"
- possible_nap_edge_acc
-
Numeric (default = Inf). Maximum acceleration before or after the SIB for the nap to be considered. By default this will allow all possible naps.
params_247
A list of parameters releated to description of 24/7 behaviours that do not fall under conventional physical activity or sleep outcomes, these parameters are used in GGIR g.part2 and GGIR g.part5:
- qwindow
-
Numeric or character (default = c(0, 24)). To specify windows over which all variables are calculated, e.g., acceleration distribution, number of valid hours, LXMX analysis, MVPA. If numeric, qwindow should have length two, e.g.,
qwindow = c(0, 24)
, all variables will only be calculated over the full 24 hours in a day. Ifqwindow = c(8, 24)
variables will be calculated over the window 0-8, 8-24 and 0-24. All days in the recording will be segmented based on these values. If you want to use a day specific segmentation in each day then you can set qwindow to be the full path to activity diary file (character). Expected format of the activity diary is: First column headers followed by one row per recording, first column is recording ID, which needs to match with the ID GGIR extracts from the accelerometer file. Followed by date column in format "23-04-2017", where date format is specified by argumentqwindow_dateformat
(below). Use the character combination date, Date or DATE in the column name. This is followed by one or multiple columns with start times for the activity types in that day format in hours:minutes:seconds. The header of the column will be used as label for each activity type. Insert a new date column before continuing with activity types for next day. Leave missing values empty. If an activity log is used then individuals who do not appear in the activity log will still be processed with valueqwindow = c(0, 24)
. Dates with no activity log data can be skipped, no need to have a column with the date followed by a column with the next date. If times in the activity diary are not multiple of the short window size (epoch length), the next epoch is considered (e.g., with epoch of 5 seconds, 8:00:02 will be redefined as 8:00:05 in the activity log). When using the qwindow functionality in combination with GGIR part 5 then make sure to check that argumentssegmentWEARcrit.part5
andsegmentDAYSPTcrit.part5
are specified to your research needs. - qwindow_dateformat
-
Character (default = " To specify the date format used in the activity log as used by strptime.
- M5L5res
-
Numeric (default = 10). Resolution of L5 and M5 analysis in minutes.
- winhr
-
Numeric (default = 5). Vector of window size(s) (unit: hours) of LX and MX analysis, where look for least and most active consecutive number of X hours.
- qlevels
-
Numeric (default = NULL). Vector of percentiles for which value needs to be extracted. These need to be expressed as a fraction of 1, e.g., c(0.1, 0.5, 0.75). There is no limit to the number of percentiles. If left empty then percentiles will not be extracted. Distribution will be derived from short epoch metric data. Argument qlevels can for example be used for the MX-metrics (e.g. Rowlands et al) as discussed in the main package vignette
- ilevels
-
Numeric (default = NULL). Levels for acceleration value frequency distribution in mg, e.g.,
ilevels = c(0,100,200)
. There is no limit to the number of levels. If left empty then the intensity levels will not be extracted. Distribution will be derived from short epoch metric data. - iglevels
-
Numeric (default = NULL). Levels for acceleration value frequency distribution in mg used for intensity gradient calculation (according to the method by Rowlands 2018). By default this is argument is empty and the intensity gradient calculation is not done. The user can either provide a single value (any) to make the intensity gradient use the bins
iglevels = c(seq(0,4000,by=25), 8000)
or the user could specify their own distribution. There is no constriction to the number of levels. - IVIS_windowsize_minutes
-
Numeric (default = 60). Window size of the Intradaily Variability (IV) and Interdaily Stability (IS) metrics in minutes, needs to be able to add up to 24 hours.
- IVIS_epochsize_seconds
-
Numeric (default = NULL). This argument is deprecated.
- IVIS.activity.metric
-
Numeric (default = 2). Metric used for activity calculation. Value = 1, uses continuous scaled acceleration. Value = 2, tries to collapse acceleration into a binary score of rest versus active to try to simulate the original approach.
- IVIS_acc_threshold
-
Numeric (default = 20). Acceleration threshold to distinguish inactive from active.
- qM5L5
-
Numeric (default = NULL). Percentiles (quantiles) to be calculated over L5 and M5 window.
- MX.ig.min.dur
-
Numeric (default = 10). Minimum MX duration needed in order for intensity gradient to be calculated.
- LUXthresholds
-
Numeric (default = c(0, 100, 500, 1000, 3000, 5000, 10000)). Vector with numeric sequence corresponding to the thresholds used to calculate time spent in LUX ranges.
- LUX_cal_constant
-
Numeric (default = NULL). If both LUX_cal_constant and LUX_cal_exponent are provided LUX values are converted based on formula y = constant * exp(x * exponent)
- LUX_cal_exponent
-
Numeric (default = NULL). If both LUX_cal_constant and LUX_cal_exponent are provided LUX LUX values are converted based on formula y = constant * exp(x * exponent)
- LUX_day_segments
-
Numeric (default = NULL). Vector with hours at which the day should be segmented for the LUX analysis.
- L5M5window
-
Argument deprecated after version 1.5-24. This argument used to define the start and end time, in 24 hour clock hours, over which L5M5 needs to be calculated. Now this is done with argument qwindow.
- cosinor
-
Boolean (default = FALSE). Whether to apply the cosinor analysis from the ActCR package.
- part6CR
-
Boolean (default = FALSE) to indicate whether circadian rhythm analysis should be run by part 6.
- part6HCA
-
Boolean (default = FALSE) to indicate whether Household Co Analysis should be run by part 6.
- part6Window
-
Character vector with length two (default = c("start", "end")) to indicate the start and the end of the time series to be used for circadian rhythm analysis in part 6. In other words, this parameters is not used for Household co-analysis. Alternative values are: "Wx", "Ox", "Hx", where "x" is a number to indicat the xth wakeup, onset or hour of the recording. Negative values for "x" are also possible and will count relative to the end of the recording. For example, c("W1", "W-1") goes from the first till the last wakeup, c("H5", "H-5") ignores the first and last 5 hours, and c("O2", "W10") goes from the second onset till the 10th wakeup time.
params_output
A list of parameters used to specify whether and how GGIR stores its output at various stages of the process.
- storefolderstructure
-
Boolean (default = FALSE). Store folder structure of the accelerometer data.
- do.part2.pdf
-
Boolean (default = TRUE). In g.part2: Whether to generate a pdf for g.part2.
- do.part3.pdf
-
Boolean (default = TRUE). In g.part3: Whether to generate a pdf for g.part3.
- timewindow
-
Character (default = c("MM", "WW")). In g.part5: Timewindow over which summary statistics are derived. Value can be "MM" (midnight to midnight), "WW" (waking time to waking time), "OO" (sleep onset to sleep onset), or any combination of them.
- save_ms5rawlevels
-
Boolean (default = FALSE). In g.part5: Whether to save the time series classification (levels) as csv or RData files (as defined by
save_ms5raw_format
). Note that time stamps will be stored in the columntimenum
in UTC format (i.e., seconds from 1970-01-01). To convert timenum to time stamp format, you need to specify your desired time zone, e.g.,as.POSIXct(mdat$timenum, tz = "Europe/London")
. - save_ms5raw_format
-
Character (default = "csv"). In g.part5: To specify how data should be stored: either "csv" or "RData". Only used if
save_ms5rawlevels = TRUE
. - save_ms5raw_without_invalid
-
Boolean (default = TRUE). In g.part5: To indicate whether to remove invalid days from the time series output files. Only used if
save_ms5rawlevels = TRUE
. - epochvalues2csv
-
Boolean (default = FALSE). In g.part2: If TRUE then epoch values are exported to a csv file. Here, non-wear time is imputed where possible.
- do.sibreport
-
Boolean (default = FALSE). In g.part4: To indicate whether to generate report for the sustained inactivity bouts (SIB). If set to TRUE and when an advanced sleep diary is available in part 4 then part 5 will use this to generate summary statistics on the overlap between self-reported nonwear and napping with SIB. Here, SIB can be filter based on argument possible_nap_edge_acc and the first value of possible_nap_dur
- do.visual
-
Boolean (default = TRUE). In g.part4: If TRUE, the function will generate a pdf with a visual representation of the overlap between the sleeplog entries and the accelerometer detections. This can be used to visually verify that the sleeplog entries do not come with obvious mistakes.
- outliers.only
-
Boolean (default = FALSE). In g.part4: Only used if
do.visual = TRUE
. If FALSE, all available nights are included in the visual representation of the data and sleeplog. If TRUE, then only nights with a difference in onset or waking time larger than the variable of argumentcriterror
will be included. - criterror
-
Numeric (default = 3). In g.part4: Only used if
do.visual = TRUE
andoutliers.only = TRUE
. criterror specifies the number of minimum number of hours difference between sleep log and accelerometer estimate for the night to be included in the visualisation. - visualreport
-
Boolean (default = TRUE). If TRUE, then generate visual report based on combined output from g.part2 and g.part4. Please note that the visual report was initially developed to provide something to show to study participants and not for data quality checking purposes. Over time we have improved the visual report to also be useful for QC-ing the data. However, some of the scorings as shown in the visual report are created for the visual report only and may not reflect the scorings in the main GGIR analyses as reported in the quantitative csv-reports. Most of our effort in the past 10 years has gone into making sure that the csv-report are correct, while the visualreport has mostly been a side project. This is unfortunate and we hope to find funding in the future to design a new report specifically for the purpose of QC-ing the analyses done by GGIR.
- viewingwindow
-
Numeric (default = 1). Centre the day as displayed around noon (
viewingwindow = 1
) or around midnight (viewingwindow = 2
) in the visual report generated withvisualreport = TRUE
. - week_weekend_aggregate.part5
-
Boolean (default = FALSE). In g.part5: To indicate whether week and weekend-days aggregates should be stored. This is turned off by default as it generates a large number of extra columns in the output report.
- dofirstpage
-
Boolean (default = TRUE). To indicate whether a first page with histograms summarizing the whole measurement should be added in the file summary reports generated with
visualreport = TRUE
. - sep_reports
-
Character (default = ","). Value used as sep argument in fwrite for writing csv reports.
- dec_reports
-
Character (default = "."). Value used as dec argument in fwrite for writing csv reports.
- sep_config
-
Character (default = ","). Value used as sep argument in fwrite for writing csv config file.
- dec_config
-
Character (default = "."). Value used as dec argument in fwrite for writing csv config file.
- visualreport_without_invalid
-
Boolean (default = TRUE). If TRUE, then reports generated with
visualreport = TRUE
only show the windows with sufficiently valid data according toincludedaycrit
when viewingwindow = 1 orincludenightcrit
when viewingwindow = 2
Value
The function provides no values, it only ensures that other functions are called and that their output is stored. Further, a configuration file is stored containing all the argument values used to facilitate reproducibility.
Author(s)
Vincent T van Hees <v.vanhees@accelting.com>
References
van Hees VT, Gorzelniak L, Dean Leon EC, Eder M, Pias M, et al. (2013) Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. PLoS ONE 8(4): e61691. doi:10.1371/journal.pone.0061691
van Hees VT, Fang Z, Langford J, Assah F, Mohammad A, da Silva IC, Trenell MI, White T, Wareham NJ, Brage S. Auto-calibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol (1985). 2014 Aug 7
van Hees VT, Sabia S, et al. (2015) A novel, open access method to assess sleep duration using a wrist-worn accelerometer, PLoS ONE, November 2015
Examples
## Not run:
mode = c(1,2,3,4,5)
datadir = "C:/myfolder/mydata"
outputdir = "C:/myresults"
studyname ="test"
f0 = 1
f1 = 2
GGIR(#-------------------------------
# General parameters
#-------------------------------
mode = mode,
datadir = datadir,
outputdir = outputdir,
studyname = studyname,
f0 = f0,
f1 = f1,
overwrite = FALSE,
do.imp = TRUE,
idloc = 1,
print.filename = FALSE,
storefolderstructure = FALSE,
#-------------------------------
# Part 1 parameters:
#-------------------------------
windowsizes = c(5,900,3600),
do.cal = TRUE,
do.enmo = TRUE,
do.anglez = TRUE,
chunksize = 1,
printsummary = TRUE,
#-------------------------------
# Part 2 parameters:
#-------------------------------
data_masking_strategy = 1,
ndayswindow = 7,
hrs.del.start = 1,
hrs.del.end = 1,
maxdur = 9,
includedaycrit = 16,
L5M5window = c(0,24),
M5L5res = 10,
winhr = c(5,10),
qlevels = c(c(1380/1440),c(1410/1440)),
qwindow = c(0,24),
ilevels = c(seq(0,400,by=50),8000),
mvpathreshold = c(100,120),
#-------------------------------
# Part 3 parameters:
#-------------------------------
timethreshold = c(5,10),
anglethreshold = 5,
ignorenonwear = TRUE,
#-------------------------------
# Part 4 parameters:
#-------------------------------
excludefirstlast = FALSE,
includenightcrit = 16,
def.noc.sleep = 1,
loglocation = "D:/sleeplog.csv",
outliers.only = FALSE,
criterror = 4,
relyonguider = FALSE,
colid = 1,
coln1 = 2,
do.visual = TRUE,
#-------------------------------
# Part 5 parameters:
#-------------------------------
# Key functions: Merging physical activity with sleep analyses
threshold.lig = c(30,40,50),
threshold.mod = c(100,120),
threshold.vig = c(400,500),
excludefirstlast = FALSE,
boutcriter = 0.8,
boutcriter.in = 0.9,
boutcriter.lig = 0.8,
boutcriter.mvpa = 0.8,
boutdur.in = c(10,20,30),
boutdur.lig = c(1,5,10),
boutdur.mvpa = c(1,5,10),
timewindow = c("WW"),
#-----------------------------------
# Report generation
#-------------------------------
do.report = c(2,4,5))
# For externally derived Actiwatch data in .AWD format:
GGIR(datadir = "/media/actiwatch_awd", # folder with epoch level .AWD file
outputdir = "/media/myoutput",
dataFormat = "actiwatch_awd",
extEpochData_timeformat = "%m/%d/%Y %H:%M:%S",
mode = 1:5,
do.report = c(2, 4, 5),
windowsizes = c(60, 900, 3600), # 60 is the expected epoch length
visualreport = FALSE,
outliers.only = FALSE,
overwrite = TRUE,
HASIB.algo = "Sadeh1994",
def.noc.sleep = c()) # <= because we cannot use HDCZA for ZCY
# For externally derived Actiwatch data in .CSV format:
GGIR(datadir = "/media/actiwatch_csv", # folder with epoch level .AWD file
outputdir = "/media/myoutput",
dataFormat = "actiwatch_csv",
extEpochData_timeformat = "%m/%d/%Y %H:%M:%S",
mode = 1:5,
do.report = c(2, 4, 5),
windowsizes = c(15, 900, 3600), # 15 is the expected epoch length
visualreport = FALSE,
outliers.only = FALSE,
HASIB.algo = "Sadeh1994",
def.noc.sleep = c()) # <= because we cannot use HDCZA for ZCY
# For externally derived UK Biobank data in .CSV format:
GGIR(datadir = "/media/ukbiobank",
outputdir = "/media/myoutput",
dataFormat = "ukbiobank_csv",
extEpochData_timeformat = "%m/%d/%Y %H:%M:%S",
mode = c(1:2),
do.report = c(2),
windowsizes = c(5, 900, 3600), # We know that data was stored in 5 second epoch
desiredtz = "Europe/London", # We know that data was collected in the UK
visualreport = FALSE,
overwrite = TRUE)
# For externally derived ActiGraph count data in .CSV format assuming
# a study protocol where sensor was not worn during the night:
GGIR(datadir = "/examplefiles",
outputdir = "",
dataFormat = "actigraph_csv",
mode = 1:5,
do.report = c(2, 4, 5),
windowsizes = c(5, 900, 3600),
threshold.in = round(100 * (5/60), digits = 2),
threshold.mod = round(2500 * (5/60), digits = 2),
threshold.vig = round(10000 * (5/60), digits = 2),
extEpochData_timeformat = "%m/%d/%Y %H:%M:%S",
do.neishabouricounts = TRUE,
acc.metric = "NeishabouriCount_x",
HASPT.algo = "NotWorn",
HASIB.algo = "NotWorn",
do.visual = TRUE,
includedaycrit = 10,
includenightcrit = 10,
visualreport = FALSE,
outliers.only = FALSE,
save_ms5rawlevels = TRUE,
ignorenonwear = FALSE,
HASPT.ignore.invalid = FALSE,
save_ms5raw_without_invalid = FALSE)
# For externally derived Sensear data in .xls format:
GGIR(datadir = "C:/yoursenseweardatafolder",
outputdir = "D:/youroutputfolder",
mode = 1:5,
windowsizes = c(60, 900, 3600),
threshold.in = 1.5,
threshold.mod = 3,
threshold.vig = 6,
dataFormat = "sensewear_xls",
extEpochData_timeformat = "%d-%b-%Y %H:%M:%S",
HASPT.algo = "NotWorn",
desiredtz = "America/New_York",
overwrite = TRUE,
do.report = c(2, 4, 5),
visualreport = FALSE)
## End(Not run)