MLE.GFGM.BurrIII {GFGM.copula} | R Documentation |
Maximum likelihood estimation for bivariate dependent competing risks data under the generalized FGM copula with the Burr III margins
Description
Maximum likelihood estimation for bivariate dependent competing risks data under the generalized FGM copula with the Burr III margins.
Usage
MLE.GFGM.BurrIII(
t.event,
event1,
event2,
D,
p,
q,
theta,
eta = 0,
Gamma.0 = 1,
epsilon.0 = 1e-05,
epsilon.1 = 1e-10,
epsilon.2 = 1e-300,
r.1 = 1,
r.2 = 1,
r.3 = 1
)
Arguments
t.event |
Vector of the observed failure times. |
event1 |
Vector of the indicators for the failure cause 1. |
event2 |
Vector of the indicators for the failure cause 2. |
D |
Positive tunning parameter in the NR algorithm. |
p |
Copula parameter that greater than or equal to 1. |
q |
Copula parameter that greater than 1 (integer). |
theta |
Copula parameter with restricted range. |
eta |
Location parameter with default value 0. |
Gamma.0 |
Initial guess for the common shape parameter gamma with default value 1. |
epsilon.0 |
Positive tunning parameter in the NR algorithm with default value 1e-5. |
epsilon.1 |
Positive tunning parameter in the NR algorithm with default value 1e-10. |
epsilon.2 |
Positive tunning parameter in the NR algorithm with default value 1e-300. |
r.1 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.2 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.3 |
Positive tunning parameter in the NR algorithm with default value 1. |
Details
The copula parameter q
is restricted to be a integer due to the binominal theorem.
The admissible range of theta
is given in Dependence.GFGM
.
Value
n |
Sample size. |
count |
Iteration number. |
random |
Randomization number. |
Alpha |
Positive shape parameter for the Burr III margin (failure cause 1). |
Beta |
Positive shape parameter for the Burr III margin (failure cause 2). |
Gamma |
Common shape parameter for the Burr III margins. |
MeanX |
Mean lifetime due to failure cause 1. |
MeanY |
Mean lifetime due to failure cause 2. |
logL |
Log-likelihood value under the fitted model. |
References
Shih J-H, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks udner the generalized FGM copula, Computational Statistics, 33:1293-1323.
Shih J-H, Emura T (2019) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula, Statistical Papers, 60:1101-1118.
See Also
Examples
con = c(16,224,16,80,128,168,144,176,176,568,392,576,128,56,112,160,384,600,40,416,
408,384,256,246,184,440,64,104,168,408,304,16,72,8,88,160,48,168,80,512,
208,194,136,224,32,504,40,120,320,48,256,216,168,184,144,224,488,304,40,160,
488,120,208,32,112,288,336,256,40,296,60,208,440,104,528,384,264,360,80,96,
360,232,40,112,120,32,56,280,104,168,56,72,64,40,480,152,48,56,328,192,
168,168,114,280,128,416,392,160,144,208,96,536,400,80,40,112,160,104,224,336,
616,224,40,32,192,126,392,288,248,120,328,464,448,616,168,112,448,296,328,56,
80,72,56,608,144,408,16,560,144,612,80,16,424,264,256,528,56,256,112,544,
552,72,184,240,128,40,600,96,24,184,272,152,328,480,96,296,592,400,8,280,
72,168,40,152,488,480,40,576,392,552,112,288,168,352,160,272,320,80,296,248,
184,264,96,224,592,176,256,344,360,184,152,208,160,176,72,584,144,176)
uncon = c(368,136,512,136,472,96,144,112,104,104,344,246,72,80,312,24,128,304,16,320,
560,168,120,616,24,176,16,24,32,232,32,112,56,184,40,256,160,456,48,24,
200,72,168,288,112,80,584,368,272,208,144,208,114,480,114,392,120,48,104,272,
64,112,96,64,360,136,168,176,256,112,104,272,320,8,440,224,280,8,56,216,
120,256,104,104,8,304,240,88,248,472,304,88,200,392,168,72,40,88,176,216,
152,184,400,424,88,152,184)
cen = rep(630,44)
t.event = c(con,uncon,cen)
event1 = c(rep(1,length(con)),rep(0,length(uncon)),rep(0,length(cen)))
event2 = c(rep(0,length(con)),rep(1,length(uncon)),rep(0,length(cen)))
library(GFGM.copula)
MLE.GFGM.BurrIII(t.event,event1,event2,5000,3,2,0.75,eta = -71)