MLE.GFGM.BurrIII {GFGM.copula}R Documentation

Maximum likelihood estimation for bivariate dependent competing risks data under the generalized FGM copula with the Burr III margins

Description

Maximum likelihood estimation for bivariate dependent competing risks data under the generalized FGM copula with the Burr III margins.

Usage

MLE.GFGM.BurrIII(
  t.event,
  event1,
  event2,
  D,
  p,
  q,
  theta,
  eta = 0,
  Gamma.0 = 1,
  epsilon.0 = 1e-05,
  epsilon.1 = 1e-10,
  epsilon.2 = 1e-300,
  r.1 = 1,
  r.2 = 1,
  r.3 = 1
)

Arguments

t.event

Vector of the observed failure times.

event1

Vector of the indicators for the failure cause 1.

event2

Vector of the indicators for the failure cause 2.

D

Positive tunning parameter in the NR algorithm.

p

Copula parameter that greater than or equal to 1.

q

Copula parameter that greater than 1 (integer).

theta

Copula parameter with restricted range.

eta

Location parameter with default value 0.

Gamma.0

Initial guess for the common shape parameter gamma with default value 1.

epsilon.0

Positive tunning parameter in the NR algorithm with default value 1e-5.

epsilon.1

Positive tunning parameter in the NR algorithm with default value 1e-10.

epsilon.2

Positive tunning parameter in the NR algorithm with default value 1e-300.

r.1

Positive tunning parameter in the NR algorithm with default value 1.

r.2

Positive tunning parameter in the NR algorithm with default value 1.

r.3

Positive tunning parameter in the NR algorithm with default value 1.

Details

The copula parameter q is restricted to be a integer due to the binominal theorem. The admissible range of theta is given in Dependence.GFGM.

Value

n

Sample size.

count

Iteration number.

random

Randomization number.

Alpha

Positive shape parameter for the Burr III margin (failure cause 1).

Beta

Positive shape parameter for the Burr III margin (failure cause 2).

Gamma

Common shape parameter for the Burr III margins.

MeanX

Mean lifetime due to failure cause 1.

MeanY

Mean lifetime due to failure cause 2.

logL

Log-likelihood value under the fitted model.

References

Shih J-H, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks udner the generalized FGM copula, Computational Statistics, 33:1293-1323.

Shih J-H, Emura T (2019) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula, Statistical Papers, 60:1101-1118.

See Also

Dependence.GFGM

Examples

con   = c(16,224,16,80,128,168,144,176,176,568,392,576,128,56,112,160,384,600,40,416,
          408,384,256,246,184,440,64,104,168,408,304,16,72,8,88,160,48,168,80,512,
          208,194,136,224,32,504,40,120,320,48,256,216,168,184,144,224,488,304,40,160,
          488,120,208,32,112,288,336,256,40,296,60,208,440,104,528,384,264,360,80,96,
          360,232,40,112,120,32,56,280,104,168,56,72,64,40,480,152,48,56,328,192,
          168,168,114,280,128,416,392,160,144,208,96,536,400,80,40,112,160,104,224,336,
          616,224,40,32,192,126,392,288,248,120,328,464,448,616,168,112,448,296,328,56,
          80,72,56,608,144,408,16,560,144,612,80,16,424,264,256,528,56,256,112,544,
          552,72,184,240,128,40,600,96,24,184,272,152,328,480,96,296,592,400,8,280,
          72,168,40,152,488,480,40,576,392,552,112,288,168,352,160,272,320,80,296,248,
          184,264,96,224,592,176,256,344,360,184,152,208,160,176,72,584,144,176)
uncon = c(368,136,512,136,472,96,144,112,104,104,344,246,72,80,312,24,128,304,16,320,
          560,168,120,616,24,176,16,24,32,232,32,112,56,184,40,256,160,456,48,24,
          200,72,168,288,112,80,584,368,272,208,144,208,114,480,114,392,120,48,104,272,
          64,112,96,64,360,136,168,176,256,112,104,272,320,8,440,224,280,8,56,216,
          120,256,104,104,8,304,240,88,248,472,304,88,200,392,168,72,40,88,176,216,
          152,184,400,424,88,152,184)
cen   = rep(630,44)

t.event = c(con,uncon,cen)
event1  = c(rep(1,length(con)),rep(0,length(uncon)),rep(0,length(cen)))
event2  = c(rep(0,length(con)),rep(1,length(uncon)),rep(0,length(cen)))

library(GFGM.copula)
MLE.GFGM.BurrIII(t.event,event1,event2,5000,3,2,0.75,eta = -71)

[Package GFGM.copula version 1.0.4 Index]