CvM.GFGM.BurrIII {GFGM.copula} | R Documentation |
The Cramer-von Mises type statistics under the generalized FGM copula
Description
Compute the Cramer-von Mises type statistics under the generalized FGM copula.
Usage
CvM.GFGM.BurrIII(
t.event,
event1,
event2,
Alpha,
Beta,
Gamma,
g1,
g2,
p,
q,
theta,
eta = 0,
Sdist.plot = TRUE
)
Arguments
t.event |
Vector of the observed failure times. |
event1 |
Vector of the indicators for the failure cause 1. |
event2 |
Vector of the indicators for the failure cause 2. |
Alpha |
Positive shape parameter for the Burr III margin (failure cause 1). |
Beta |
Positive shape parameter for the Burr III margin (failure cause 2). |
Gamma |
Common positive shape parameter for the Burr III margins. |
g1 |
Splines coefficients for the failure cause 1. |
g2 |
Splines coefficients for the failure cause 2. |
p |
Copula parameter that greater than or equal to 1. |
q |
Copula parameter that greater than 1 (integer). |
theta |
Copula parameter with restricted range. |
eta |
Location parameter with default value 0. |
Sdist.plot |
Plot sub-distribution functions if |
Details
The copula parameter q
is restricted to be a integer due to the binominal theorem.
The admissible range of theta
is given in Dependence.GFGM
.
Value
S.overall |
Cramer-von Mises type statistic based on parametric and non-parametric estimators of sub-distribution functions for testing overall model. |
S.GFGM |
Cramer-von Mises type statistic based on semi-parametric and non-parametric estimators of sub-distribution functions for testing the generalized FGM copula. |
References
Shih J-H, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks udner the generalized FGM copula, Computational Statistics, 33:1293-1323.
See Also
Dependence.GFGM
, MLE.GFGM.BurrIII
, MLE.GFGM.spline
Examples
con = c(16,224,16,80,128,168,144,176,176,568,392,576,128,56,112,160,384,600,40,416,
408,384,256,246,184,440,64,104,168,408,304,16,72,8,88,160,48,168,80,512,
208,194,136,224,32,504,40,120,320,48,256,216,168,184,144,224,488,304,40,160,
488,120,208,32,112,288,336,256,40,296,60,208,440,104,528,384,264,360,80,96,
360,232,40,112,120,32,56,280,104,168,56,72,64,40,480,152,48,56,328,192,
168,168,114,280,128,416,392,160,144,208,96,536,400,80,40,112,160,104,224,336,
616,224,40,32,192,126,392,288,248,120,328,464,448,616,168,112,448,296,328,56,
80,72,56,608,144,408,16,560,144,612,80,16,424,264,256,528,56,256,112,544,
552,72,184,240,128,40,600,96,24,184,272,152,328,480,96,296,592,400,8,280,
72,168,40,152,488,480,40,576,392,552,112,288,168,352,160,272,320,80,296,248,
184,264,96,224,592,176,256,344,360,184,152,208,160,176,72,584,144,176)
uncon = c(368,136,512,136,472,96,144,112,104,104,344,246,72,80,312,24,128,304,16,320,
560,168,120,616,24,176,16,24,32,232,32,112,56,184,40,256,160,456,48,24,
200,72,168,288,112,80,584,368,272,208,144,208,114,480,114,392,120,48,104,272,
64,112,96,64,360,136,168,176,256,112,104,272,320,8,440,224,280,8,56,216,
120,256,104,104,8,304,240,88,248,472,304,88,200,392,168,72,40,88,176,216,
152,184,400,424,88,152,184)
cen = rep(630,44)
t.event = c(con,uncon,cen)
event1 = c(rep(1,length(con)),rep(0,length(uncon)),rep(0,length(cen)))
event2 = c(rep(0,length(con)),rep(1,length(uncon)),rep(0,length(cen)))
library(GFGM.copula)
#res.BurrIII = MLE.GFGM.BurrIII(t.event,event1,event2,5000,3,2,0.75,eta = -71)
#Alpha = res.BurrIII$Alpha[1]
#Beta = res.BurrIII$Beta[1]
#Gamma = res.BurrIII$Gamma[1]
#res.spline = MLE.GFGM.spline(t.event,event1,event2,3,2,0.75)
#g1 = res.spline$g1
#g2 = res.spline$g2
#CvM.GFGM.BurrIII(t.event,event1,event2,Alpha,Beta,Gamma,g1,g2,3,2,0.75,eta = -71)