contr_mat {GFDmcv} | R Documentation |
Contrasts' matrices
Description
The output are different contrast matrices, namely the centering matrix as well as the matrices of Dunnett's and Tukey's contrasts for given number of groups.
Usage
contr_mat(k, type = c("center", "Dunnett", "Tukey"))
Arguments
k |
an integer denoting a number of groups |
type |
an character denoting type of contrasts. The possible values are |
Details
The centering matrix is \mathbf{P}_k = \mathbf{I}_k - \mathbf{J}_k/k
, where
\mathbf{I}_k
is the unity matrix and \mathbf{J}_k=\mathbf{1}\mathbf{1}^{\top} \in R^{k\times k}
consisting of 1
's only.
The matrix of Dunnett's contrasts:
\left(\begin{array}{rrrrrr}
-1 & 1 & 0 & \ldots & \ldots & 0\\
-1 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-1 & 0 & \ldots & \ldots & 0 & 1\\
\end{array}\right)\in R^{(k-1)\times k}.
The matrix of Tukey's contrasts:
\left(\begin{array}{rrrrrrr}
-1 & 1 & 0 & \ldots & \ldots & 0 & 0\\
-1 & 0 & 1 & 0 & \ldots & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-1 & 0 & 0 & 0 & \ldots & \ldots & 1 \\
0 & -1 & 1 & 0 &\ldots & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & \ldots & \ldots & 0 & -1 & 1\\
\end{array}\right)\in R^{{k \choose 2}\times k}.
Value
The matrix of contrasts.
References
Ditzhaus M., Smaga L. (2022) Permutation test for the multivariate coefficient of variation in factorial designs. Journal of Multivariate Analysis 187, 104848.
Ditzhaus M., Smaga L. (2023) Inference for all variants of the multivariate coefficient of variation in factorial designs. Preprint https://arxiv.org/abs/2301.12009.
Dunnett C. (1955) A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association 50, 1096-1121.
Tukey J.W. (1953) The problem of multiple comparisons. Princeton University.
Examples
contr_mat(4, type = "center")
contr_mat(4, type = "Dunnett")
contr_mat(4, type = "Tukey")