saplings {GET} | R Documentation |
Saplings data set
Description
Saplings data set
Usage
data("saplings")
Format
A data.frame
containing the locations (x- and y-coordinates) of 123 trees
in an area of 75 m x 75 m.
Details
A pattern of small trees (height <= 15 m) originating from an uneven aged multi-species broadleaf nonmanaged forest in Kaluzhskie Zaseki, Russia.
The pattern is a sample part of data collected over 10 ha plot as a part of a research program headed by project leader Prof. O.V. Smirnova.
References
Grabarnik, P. and Chiu, S. N. (2002) Goodness-of-fit test for complete spatial randomness against mixtures of regular and clustered spatial point processes. Biometrika, 89, 411–421.
van Lieshout, M.-C. (2010) Spatial point process theory. In Handbook of Spatial Statistics (eds. A. E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp), Handbooks of Modern Statistical Methods. Boca Raton: CRC Press.
Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017). Global envelope tests for spatial point patterns. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79: 381-404. doi: 10.1111/rssb.12172
See Also
Examples
# This is an example analysis of the saplings data set
#=====================================================
# Example of Myllymaki et al. (2017, Supplement S4).
if(require("spatstat.explore", quietly=TRUE)) {
data("saplings")
saplings <- as.ppp(saplings, W=square(75))
# First choose the r-distances for L (r) and J (rJ) functions, respectively.
nr <- 500
rmin <- 0.3; rminJ <- 0.3
rmax <- 10; rmaxJ <- 6
rstep <- (rmax-rmin)/nr; rstepJ <- (rmaxJ-rminJ)/nr
r <- seq(0, rmax, by=rstep)
rJ <- seq(0, rmaxJ, by=rstepJ)
#-- CSR test --# (a simple hypothesis)
#--------------#
# First, a CSR test using the L(r)-r function:
# Note: CSR is simulated by fixing the number of points and generating nsim simulations
# from the binomial process, i.e. we deal with a simple hypothesis.
nsim <- 999 # Number of simulations
env <- envelope(saplings, nsim=nsim,
simulate=expression(runifpoint(ex=saplings)), # Simulate CSR
fun="Lest", correction="translate", # T(r) = estimator of L with translational edge correction
transform=expression(.-r), # Take the L(r)-r function instead of L(r)
r=r, # Specify the distance vector
savefuns=TRUE) # Save the estimated functions
# Crop the curves to the interval of distances [rmin, rmax]
# (at the same time create a curve_set from 'env')
curve_set <- crop_curves(env, r_min=rmin, r_max=rmax)
# Perform a global envelope test
res <- global_envelope_test(curve_set, type="erl") # type="rank" and larger nsim was used in S4.
# Plot the result.
plot(res) + ggplot2::ylab(expression(italic(hat(L)(r)-r)))
# -> The CSR hypothesis is clearly rejected and the rank envelope indicates clear
# clustering of saplings. Next we explore the Matern cluster process as a null model.
}
if(require("spatstat.model", quietly=TRUE)) {
#-- Testing the Matern cluster process --# (a composite hypothesis)
#----------------------------------------#
# Fit the Matern cluster process to the pattern (using minimum contrast estimation with the pair
# correction function)
fitted_model <- kppm(saplings~1, clusters="MatClust", statistic="pcf")
summary(fitted_model)
nsim <- 19 # 19 just for experimenting with the code!!
#nsim <- 499 # 499 is ok for type = 'qdir' (takes > 1 h)
# Make the adjusted directional quantile global envelope test using the L(r)-r function
# (For the rank envelope test, choose type = "rank" instead and increase nsim.)
adjenvL <- GET.composite(X=fitted_model,
fun="Lest", correction="translate",
transform=expression(.-r), r=r,
type="qdir", nsim=nsim, nsimsub=nsim,
r_min=rmin, r_max=rmax)
# Plot the test result
plot(adjenvL) + ggplot2::ylab(expression(italic(L(r)-r)))
# From the test with the L(r)-r function, it appears that the Matern cluster model would be
# a reasonable model for the saplings pattern.
# To further explore the goodness-of-fit of the Matern cluster process, test the
# model with the J function:
# This takes quite some time if nsim is reasonably large.
adjenvJ <- GET.composite(X=fitted_model,
fun="Jest", correction="none", r=rJ,
type="qdir", nsim=nsim, nsimsub=nsim,
r_min=rminJ, r_max=rmaxJ)
# Plot the test result
plot(adjenvJ) + ggplot2::ylab(expression(italic(J(r))))
# -> the Matern cluster process not adequate for the saplings data
# Test with the two test functions jointly
adjenvLJ <- GET.composite(X=fitted_model,
testfuns=list(L=list(fun="Lest", correction="translate",
transform=expression(.-r), r=r),
J=list(fun="Jest", correction="none", r=rJ)),
type="erl", nsim=nsim, nsimsub=nsim,
r_min=c(rmin, rminJ), r_max=c(rmax, rmaxJ),
save.cons.envelope=TRUE)
plot(adjenvLJ)
}