GET.spatialF {GET} | R Documentation |
Testing global and local dependence of point patterns on covariates
Description
Compute the spatial F- and S-statistics and perform the one-stage global envelope tests proposed by Myllymäki et al. (2020).
Usage
GET.spatialF(
X,
formula.full,
formula.reduced,
fitfun,
covariates,
nsim,
bw = spatstat.explore::bw.scott(X),
bw.S = bw,
dimyx = NULL,
...
)
Arguments
X |
A |
formula.full |
A formula for the trend of the full model. |
formula.reduced |
A formula for the trend of the reduced model that is a submodel of the full model. |
fitfun |
A function of a point pattern, model formula and covariates,
giving a fitted model object that can be used with |
covariates |
A list of covariates. |
nsim |
The number of simulations. |
bw |
The bandwidth for smoothed residuals. |
bw.S |
The radius for the local S(u)-statistic. |
dimyx |
Pixel array dimensions for smoothed residuals. See |
... |
Additional arguments to be passed to |
Value
list with three components
F = the global envelope test based on the F(u) statistic
S = the global envelope test based on the S(u) statistic
coef = the coefficients of the full model given by fitfun
References
Myllymäki, M., Kuronen, M. and Mrkvička, T. (2020). Testing global and local dependence of point patterns on covariates in parametric models. Spatial Statistics 42, 100436. doi: 10.1016/j.spasta.2020.100436
Examples
if(require("spatstat.model", quietly=TRUE)) {
# Example of tropical rain forest trees
data("bei")
fullmodel <- ~ grad
reducedmodel <- ~ 1
fitppm <- function(X, model, covariates) {
ppm(X, model, covariates=covariates)
}
nsim <- 19 # Increase nsim for serious analysis!
res <- GET.spatialF(bei, fullmodel, reducedmodel, fitppm, bei.extra, nsim)
plot(res$F)
plot(res$S)
# Example of forest fires
data("clmfires")
# Choose the locations of the lightnings in years 2004-2007:
pp.lightning <- unmark(subset(clmfires, cause == "lightning" &
date >= "2004-01-01" & date < "2008-01-01"))
covariates <- clmfires.extra$clmcov100
covariates$forest <- covariates$landuse == "conifer" | covariates$landuse == "denseforest" |
covariates$landuse == "mixedforest"
fullmodel <- ~ elevation + landuse
reducedmodel <- ~ landuse
nsim <- 19 # Increase nsim for serious analysis!
res <- GET.spatialF(pp.lightning, fullmodel, reducedmodel, fitppm, covariates, nsim)
plot(res$F)
plot(res$S)
# Examples of the fitfun functions for clustered and regular processes
# fitfun for the log Gaussian Cox Process with exponential covariance function
fitLGCPexp <- function(X, model, covariates) {
kppm(X, model, clusters="LGCP", model="exponential", covariates=covariates)
}
# fitfun for the hardcore process with hardcore radius 0.01
fitHardcore <- function(X, model, covariates) {
ppm(X, model, interaction=Hardcore(0.01), covariates=covariates)
}
}