QPCorr.pval {GEInter} | R Documentation |
P-values of the "QPCorr.matrix" obtained using a permutation approach
Description
P-values of the "QPCorr.matrix "
obtained using a permutation approach, the
interactions with smaller p-values are regarded as more important.
Usage
QPCorr.pval(
G,
E,
Y,
tau,
w = NULL,
permutation_t = 1000,
family = c("continuous", "survival")
)
Arguments
G |
Input matrix of |
E |
Input matrix of |
Y |
Response variable. A quantitative vector for |
tau |
Quantile. |
w |
Weight for accommodating censoring if |
permutation_t |
Number of permutation. |
family |
Response type of |
Value
Matrix of p-value, with the element in the i
th row and the j
column
represents the p-value of the (censored) quantile partial correlation corresponding to the
i
th E and the j
th G.
References
Yaqing Xu, Mengyun Wu, Qingzhao Zhang, and Shuangge Ma. Robust identification of gene-environment interactions for prognosis using a quantile partial correlation approach. Genomics, 111(5):1115-1123, 2019.
See Also
QPCorr.matrix
method.
Examples
n=50
alpha=matrix(0,5,1)
alpha[1:2]=1
beta=matrix(0,6,20)
beta[1,1:4]=1
beta[2:3,1:4]=2
sigmaG<-AR(rho=0.3,20)
sigmaE<-AR(rho=0.3,5)
G<-MASS::mvrnorm(n,rep(0,20),sigmaG)
E<-MASS::mvrnorm(n,rep(0,5),sigmaE)
e1<-rnorm(n*.05,50,1);e2<-rnorm(n*.05,-50,1);e3<-rnorm((n-length(e1)-length(e2)))
e<-c(e1,e2,e3)
# continuous
y1=simulated_data(G=G,E=E,alpha=alpha,beta=beta,error=e,family="continuous")
cpqcorr_pvalue1<-QPCorr.pval(G,E,y1,tau=0.5,permutation_t=500,family="continuous")
# survival
y2=simulated_data(G,E,alpha,beta,rnorm(n,0,1),family="survival",0.7,0.9)
cpqcorr_pvalue2<-QPCorr.pval(G,E,y2,tau=0.5,permutation_t=500,family="survival")