gemTechnologyProgress_PopulationGrowth {GE} | R Documentation |
Some General Equilibrium Models with Technology Progress and Population Growth
Description
Some examples illustrating technology Progress and population growth.
Usage
gemTechnologyProgress_PopulationGrowth(...)
Arguments
... |
arguments to be passed to the function sdm2. |
Examples
#### a financial sequential model
gr.e <- 0.03 # the population growth rate
tpr <- 0.02 # the rate of technological progress
gr <- (1 + gr.e) * (1 + tpr) - 1
eis <- 0.8 # the elasticity of intertemporal substitution
Gamma.beta <- 0.8 # the subjective discount factor
yield.rate <- (1 + gr)^(1 / eis - 1) / Gamma.beta - 1 # the dividend rate
y1 <- 143.18115 # the initial product supply
dst.firm <- node_new("output",
type = "FIN",
rate = c(1, dividend.rate = yield.rate),
"cc1", "equity.share"
)
node_set(dst.firm, "cc1",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod", "cc1.1"
)
node_set(dst.firm, "cc1.1",
type = "Leontief", a = 1,
"lab"
)
dst.laborer <- node_new("util",
type = "Leontief", a = 1,
"prod"
)
dst.shareholder <- Clone(dst.laborer)
ge <- sdm2(
A = list(dst.firm, dst.laborer, dst.shareholder),
B = diag(c(1, 0, 0)),
S0Exg = {
S0Exg <- matrix(NA, 3, 3)
S0Exg[2, 2] <- S0Exg[3, 3] <- 100 / (1 + gr.e)
S0Exg
},
names.commodity = c("prod", "lab", "equity.share"),
names.agent = c("firm", "laborer", "shareholder"),
numeraire = "prod",
maxIteration = 1,
numberOfPeriods = 20,
policy = list(function(time, A) {
node_set(A[[1]], "cc1.1", a = 1 / (1 + tpr)^(time - 1))
}, policyMarketClearingPrice),
z0 = c(y1, 0, 0),
GRExg = gr.e,
ts = TRUE
)
matplot(growth_rate(ge$ts.p), type = "l")
matplot(growth_rate(ge$ts.z), type = "l")
ge$ts.z
## a timeline model
np <- 5 # the number of economic periods.
n <- 2 * np - 1 # the number of commodity kinds
m <- np # the number of agent kinds
names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:(np - 1)))
names.agent <- c(paste0("firm", 1:(np - 1)), "consumer")
# the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100 * (1 + gr.e)^(0:(np - 2))
S0Exg["prod1", "consumer"] <- y1
# the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {
B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}
dstl.firm <- list()
for (k in 1:(np - 1)) {
dstl.firm[[k]] <- node_new(
"prod",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
paste0("prod", k), "cc1"
)
node_set(dstl.firm[[k]], "cc1",
type = "Leontief", a = 1 / ((1 + tpr)^(k - 1)),
paste0("lab", k)
)
}
dst.consumer <- node_new(
"util",
type = "CES",
alpha = 1, beta = prop.table(Gamma.beta^(1:np)), es = eis,
paste0("prod", 1:np)
)
ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
maxIteration = 1,
numberOfPeriods = 40,
ts = TRUE,
policy = list(
makePolicyTailAdjustment(ind = c(np - 1, np), gr = gr),
policyMarketClearingPrice
)
)
ge$z
ge$D
ge$S
ge$p[1:3] / ge$p[2:4] - 1 # the steady-state equilibrium return rate
sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr) # the steady-state equilibrium return rate
## a financial time-circle model
zeta <- (1 + gr)^np # the ratio of repayments to loans
n <- 2 * np + 1 # the number of commodity kinds
m <- np + 1 # the number of agent kinds
names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np), "claim")
names.agent <- c(paste0("firm", 1:np), "consumer")
# the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer"] <- 100 * (1 + gr.e)^(0:(np - 1))
S0Exg["claim", "consumer"] <- 100
# the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {
B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}
B["prod1", paste0("firm", np)] <- 1 / zeta
dstl.firm <- list()
for (k in 1:np) {
dstl.firm[[k]] <- node_new("output",
type = "FIN", rate = c(1, yield.rate),
"cc1", "claim"
)
node_set(dstl.firm[[k]], "cc1",
type = "CD", alpha = 2,
beta = c(0.5, 0.5),
paste0("prod", k), "cc1.1"
)
node_set(dstl.firm[[k]], "cc1.1",
type = "Leontief", a = 1 / ((1 + tpr)^(k - 1)),
paste0("lab", k)
)
}
dst.consumer <- node_new(
"util",
type = "CES", es = 1,
alpha = 1, beta = prop.table(rep(1, np)),
paste0("prod", 1:np)
)
ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
ts = TRUE
)
ge$z
growth_rate(ge$z)
ge$D
ge$S
[Package GE version 0.4.5 Index]