gemPersistentTechnologicalProgress {GE} | R Documentation |
Some Examples of Spot Market Clearing Paths with Persistent Technological Progress
Description
Some examples of spot market clearing paths (alias instantaneous equilibrium paths) with persistent technological progress. From the fifth period, technological progress occurs.
Usage
gemPersistentTechnologicalProgress(...)
Arguments
... |
arguments to be passed to the function sdm2. |
See Also
Examples
#### a 2-by-2 example with labor-saving technological progress
tpr <- 0.03 # technological progress rate
dst.firm <- node_new(
"prod",
type = "SCES",
es = 0.5, alpha = 1,
beta = c(0.5, 0.5),
"prod", "cc1"
)
node_set(dst.firm, "cc1",
type = "Leontief", a = 1,
"lab"
)
dst.consumer <- node_new(
"util",
type = "Leontief", a = 1,
"prod"
)
dstl <- list(dst.firm, dst.consumer)
ge <- sdm2(
A = dstl,
B = matrix(c(
1, 0,
0, 0
), 2, 2, TRUE),
S0Exg = matrix(c(
NA, NA,
NA, 100
), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "prod",
ts = TRUE,
policy = list(
function(time, A) {
if (time >= 5) {
node_set(A[[1]], "cc1",
a = (1 + tpr)^-(time - 4)
)
}
},
policyMarketClearingPrice
),
numberOfPeriods = 40,
maxIteration = 1,
z0 = c(200, 100),
p0 = c(1, 1)
)
matplot(growth_rate(ge$ts.z), type = "o", pch = 20)
matplot(growth_rate(ge$ts.p), type = "o", pch = 20)
#### a 3-by-3 example with labor-saving technological progress
tpr <- 0.03 # technological progress rate
dst.manu <- node_new("manu",
type = "SCES", es = 0.5, alpha = 1,
beta = c(0.6, 0.4),
"manu", "cc1"
)
node_set(dst.manu, "cc1",
type = "Leontief", a = 1,
"lab"
)
dst.serv <- node_new("serv",
type = "SCES", es = 0.5, alpha = 1,
beta = c(0.4, 0.6),
"manu", "lab"
)
dst.consumer <- node_new("util",
type = "SCES", es = 0.5, alpha = 1,
beta = c(0.4, 0.6),
"manu", "serv"
)
dstl <- list(dst.manu, dst.serv, dst.consumer)
ge <- sdm2(
A = dstl,
B = matrix(c(
1, 0, 0,
0, 1, 0,
0, 0, 0
), 3, 3, TRUE),
S0Exg = {
S0Exg <- matrix(NA, 3, 3)
S0Exg[3, 3] <- 100
S0Exg
},
names.commodity = c("manu", "serv", "lab"),
names.agent = c("manu", "serv", "consumer"),
numeraire = c("manu"),
ts = TRUE,
policy = list(
function(time, A) {
if (time >= 5) {
node_set(A[[1]], "cc1",
a = (1 + tpr)^-(time - 4)
)
}
},
policyMarketClearingPrice
),
numberOfPeriods = 40,
maxIteration = 1,
z0 = c(160, 60, 100),
p0 = c(1, 1, 1)
)
matplot(ge$ts.z, type = "o", pch = 20)
matplot(growth_rate(ge$ts.z), type = "o", pch = 20)
matplot(growth_rate(ge$ts.p), type = "o", pch = 20)
#### a 3-by-3 example with labor-saving technological
#### progress and capital accumulation
dst.firm1 <- node_new(
"prod",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"cap", "cc1"
)
node_set(dst.firm1, "cc1",
type="Leontief", a=1,
"lab")
dst.consumer <- dst.firm2 <- node_new(
"util",
type = "Leontief",
a= 1,
"prod"
)
ge <- sdm2(
A = list(dst.firm1, dst.consumer, dst.firm2),
B = matrix(c(
1, 0, 0.5,
0, 0, 1,
0, 0, 0
), 3, 3, TRUE),
S0Exg = matrix(c(
NA, NA, NA,
NA, NA, NA,
NA, 100,NA
), 3, 3, TRUE),
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm1", "laborer","firm2"),
numeraire = "prod",
z0=c(400,200,400),
policy = list(
function(time, A) {
if (time >= 5) {
node_set(A[[1]],"cc1", a = (1 + 0.03)^-(time - 4))
}
},
policyMarketClearingPrice
),
maxIteration = 1,
numberOfPeriods = 30,
ts=TRUE
)
matplot(growth_rate(ge$ts.z), type="l")
[Package GE version 0.4.5 Index]