gemIntertemporal_EndogenousEquilibriumInterestRate_MoneyVelocity {GE} | R Documentation |
An Example Illustrating Endogenous Equilibrium Interest Rates and the Velocity of Money in a (Timeline) Transitional Equilibrium Path
Description
This example illustrates (endogenous) equilibrium primitive interest rates and the velocity of money in a transitional equilibrium path. The (primitive) interest rate here can be divided into two types, namely the interest rate in the case of lump-sum interest payment and the interest rate in the case of installment interest payment.
Usage
gemIntertemporal_EndogenousEquilibriumInterestRate_MoneyVelocity(...)
Arguments
... |
arguments to be passed to the function sdm2. |
See Also
gemIntertemporal_EndogenousEquilibriumInterestRate
Examples
vm <- 4 # the velocity of money
eis <- 0.8 # the elasticity of intertemporal substitution
Gamma.beta <- 0.8 # the subjective discount factor
gr <- 0 # the steady-state growth rate
np <- 20 # the number of economic periods
f <- function(ir.installment = rep(0.25, np - 1), return.ge = FALSE,
y1 = 10, # the product supply in the first period
alpha.firm = rep(2, np - 1) # the efficiency parameters of firms
) {
n <- 2 * np # the number of commodity kinds
m <- np + 1 # the number of agent kinds
names.commodity <- c(
paste0("prod", 1:np),
paste0("lab", 1:(np - 1)),
"money"
)
names.agent <- c(
paste0("firm", 1:(np - 1)),
"laborer", "moneyOwner"
)
# the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "laborer"] <- 100 * (1 + gr)^(0:(np - 2))
S0Exg["money", "moneyOwner"] <- 100
S0Exg["prod1", "laborer"] <- y1
# the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {
B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}
dstl.firm <- list()
for (k in 1:(np - 1)) {
dstl.firm[[k]] <- node_new(
"prod",
type = "FIN", rate = c(1, ir.installment[k] / vm),
"cc1", "money"
)
node_set(dstl.firm[[k]], "cc1",
type = "CD", alpha = alpha.firm[k], beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)
)
}
dst.laborer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("cc", 1:(np - 1)), paste0("prod", np)
)
for (k in 1:(np - 1)) {
node_set(dst.laborer, paste0("cc", k),
type = "FIN", rate = c(1, ir.installment[k] / vm),
paste0("prod", k), "money"
)
}
dst.moneyOwner <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:(np - 1))),
paste0("cc", 1:(np - 1))
)
for (k in 1:(np - 1)) {
node_set(dst.moneyOwner, paste0("cc", k),
type = "FIN", rate = c(1, ir.installment[k] / vm),
paste0("prod", k), "money"
)
}
ge <- sdm2(
A = c(dstl.firm, dst.laborer, dst.moneyOwner),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
policy = makePolicyHeadTailAdjustment(gr = gr, np = np, type = c("tail"))
)
tmp <- rowSums(ge$SV)
ts.exchange.value <- tmp[paste0("prod", 1:(np - 1))] + tmp[paste0("lab", 1:(np - 1))]
# The lump-sum interest rate equals the yield rate of money.
ir.lumpsum <- ts.exchange.value[1:(np - 2)] / ts.exchange.value[2:(np - 1)] - 1
ir.lumpsum <- pmax(1e-6, ir.lumpsum)
ir.lumpsum[np - 1] <- ir.lumpsum[np - 2]
ir.installment.new <- 1 / (1 / ir.lumpsum + 1 - 1 / vm)
ir.installment <- c(ir.installment * ratio_adjust(ir.installment.new / ir.installment, 0.3))
cat("ir.installment: ", ir.installment, "\n")
if (return.ge) {
ge$ts.exchange.value <- ts.exchange.value
return(ge)
} else {
return(ir.installment)
}
}
## Calculate equilibrium installment interest rates.
## Warning: Running the program below takes about several minutes.
## mat.ir.installment <- iterate(rep(0.1, np - 1), f, tol = 1e-4)
## # the lump-sum interest rate in the steady-state equilibrium.
## ir.lumpsum.steadyState <- sserr(eis, Gamma.beta, gr, prepaid = TRUE)
## # the installment interest rate in the steady-state equilibrium.
## 1 / (1 / ir.lumpsum.steadyState + 1 - 1 / vm)
## Below are the calculated equilibrium installment interest rates.
(ir.installment <- c(
0.3723, 0.2981, 0.2580, 0.2363, 0.2245, 0.2181, 0.2147,
0.2128, 0.2118, 0.2112, 0.2109, 0.2107, 0.2106, 0.2106,
0.2106, 0.2105, 0.2105, 0.2106, 0.2106
))
ge <- f(ir.installment, TRUE)
plot(ge$z[1:(np - 1)], type = "o")
# The yield rate is the interest rate for a lump-sum payment.
(ir.lumpsum <- ge$ts.exchange.value[1:(np - 2)] / ge$ts.exchange.value[2:(np - 1)] - 1)
1 / (1 / ir.lumpsum + 1 - 1 / vm) # consistent with the installment interest rates
# consistent with the lump-sum interest rates.
ir.installment / (1 + ir.installment / vm - ir.installment)
## Calculate the growth rate of the money supply and the equilibrium nominal
## lump-sum interest rates when the current price of the product remains constant.
price.money <- 1 / c(1, cumprod(ir.installment + 1))
currentPrice.prod <- ge$p[1:np] / price.money
gr.moneySupply <- unname(growth_rate(1 / currentPrice.prod))
# the equilibrium nominal lump-sum interest rates
(1 + ir.lumpsum) * (gr.moneySupply[2:(np - 1)] + 1) - 1
(1 + ir.installment / (1 + ir.installment / vm - ir.installment)) * (gr.moneySupply[2:np] + 1) - 1
## the corresponding sequential model with the same steady-state equilibrium.
dividend.rate <- sserr(eis, Gamma.beta, prepaid = TRUE)
ir.installment <- 1 / (1 / dividend.rate + 1 - 1 / vm)
np <- 5
ge.ss <- f(ir.installment = rep(ir.installment, np - 1), return.ge = TRUE, y1 = 152)
dst.firm <- node_new("prod",
type = "FIN", rate = c(1, ir.installment / vm, (1 + ir.installment / vm) * dividend.rate),
"cc1", "money", "equity.share"
)
node_set(dst.firm, "cc1",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod", "lab"
)
dst.laborer <- node_new("util",
type = "FIN", rate = c(1, ir.installment / vm),
"prod", "money"
)
dst.moneyOwner <- node_new("util",
type = "FIN", rate = c(1, ir.installment / vm),
"prod", "money"
)
ge2 <- sdm2(
A = list(dst.firm, dst.laborer, dst.moneyOwner),
B = matrix(c(
1, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0
), 4, 3, TRUE),
S0Exg = matrix(c(
NA, NA, NA,
NA, 100, NA,
NA, NA, 100,
NA, 100, NA
), 4, 3, TRUE),
names.commodity = c(
"prod", "lab", "money", "equity.share"
),
names.agent = c("firm", "laborer", "moneyOwner"),
numeraire = "prod"
)
ge2$p
ge.ss$z[np - 1]
ge2$z
ge.ss$D[paste0("prod", np - 1), c("laborer", "moneyOwner")]
ge2$D
[Package GE version 0.4.5 Index]