gemCanonicalDynamicMacroeconomic_TimeCircle_2_2 {GE} | R Documentation |
A Canonical Dynamic Macroeconomic General Equilibrium Model in Time-circle Form (see Torres, 2016)
Description
A canonical dynamic macroeconomic general equilibrium model in time-circle form (see Torres, 2016, Table 2.1 and 2.2).
Usage
gemCanonicalDynamicMacroeconomic_TimeCircle_2_2(
alpha.firm = rep(1, 3),
es.prod.lab.firm = 1,
beta.prod.firm = 0.35,
depreciation.rate = 0.06,
eis = 1,
Gamma.beta = 0.97,
beta.prod.consumer = 0.4,
es.prod.lab.consumer = 1,
gr = 0,
wage.payment = "post",
...
)
Arguments
alpha.firm |
a positive vector, indicating the efficiency parameters of the firm for each economic period. The number of economic periods will be set to length(alpha.firm) . |
es.prod.lab.firm |
the elasticity of substitution between product and labor in the production function of the firm. |
beta.prod.firm |
the share parameter of the product in the production function. |
depreciation.rate |
the physical depreciation rate of capital stock. |
eis |
the elasticity of intertemporal substitution of the consumer. |
Gamma.beta |
the subjective discount factor of the consumer. |
beta.prod.consumer |
the share parameter of the product in the period utility function. |
es.prod.lab.consumer |
the elasticity of substitution between product and labor in the CES-type period utility function of the consumer. |
gr |
the growth rate of the labor supply. |
wage.payment |
a character string specifying the wage payment method, must be one of "pre" or "post". |
... |
arguments to be passed to the function sdm2. |
Value
A general equilibrium (see sdm2
).
References
Torres, Jose L. (2016, ISBN: 9781622730452) Introduction to Dynamic Macroeconomic General Equilibrium Models (Second Edition). Vernon Press.
See Also
gemCanonicalDynamicMacroeconomic_Timeline_2_2
,
gemCanonicalDynamicMacroeconomic_Sequential_3_2
,
gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3
.
Examples
#### Take the wage postpayment assumption.
ge <- gemCanonicalDynamicMacroeconomic_TimeCircle_2_2()
np <- 3
eis <- 1
Gamma.beta <- 0.97
gr <- 0
ge$p
growth_rate(ge$p[1:np])
1 / (1 + sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr)) - 1
ge$z
growth_rate(ge$z[1:np])
ge$D
ge$S
## Take the wage postpayment assumption.
eis <- 0.8
Gamma.beta <- 0.97
gr <- 0.03
ge <- gemCanonicalDynamicMacroeconomic_TimeCircle_2_2(
es.prod.lab.firm = 0.8,
eis = eis, Gamma.beta = Gamma.beta, es.prod.lab.consumer = 0.8,
gr = gr
)
ge$p
growth_rate(ge$p[1:np])
1 / (1 + sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr)) - 1
ge$z
growth_rate(ge$z[1:np])
ge$D
ge$S
#### an anticipated technology shock.
## Warning: Running the program below takes about 4 minutes.
# np <- 120
# alpha.firm <- rep(1, np)
# alpha.firm[40] <- 1.05
# ge <- gemCanonicalDynamicMacroeconomic_TimeCircle_2_2(alpha.firm = alpha.firm)
## The steady state product supply is 343.92.
## the (economic) time series of product supply
# plot(ge$z[1:np] / 343.92 - 1, type = "o", pch = 20)
## The steady state product consumption is 57.27.
## the (economic) time series of product consumption
# plot(ge$D[2:np, np + 1] / 57.27 - 1, type = "o", pch = 20)
#### Take the wage prepayment assumption.
ge <- gemCanonicalDynamicMacroeconomic_TimeCircle_2_2(wage.payment = "pre")
np <- 3
eis <- 1
Gamma.beta <- 0.97
gr <- 0
ge$p
growth_rate(ge$p[1:np])
1 / (1 + sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr)) - 1
ge$z
growth_rate(ge$z[1:np])
ge$D
ge$S
## Take the wage prepayment assumption.
eis <- 0.8
Gamma.beta <- 0.97
gr <- 0.03
ge <- gemCanonicalDynamicMacroeconomic_TimeCircle_2_2(
es.prod.lab.firm = 0.8,
eis = eis, es.prod.lab.consumer = 0.8,
Gamma.beta = Gamma.beta, gr = gr,
wage.payment = "pre"
)
ge$p
growth_rate(ge$p[1:np])
1 / (1 + sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr)) - 1
ge$z
growth_rate(ge$z[1:np])
ge$D
ge$S