medoids {GDAtools} | R Documentation |
Medoids of clusters
Description
Computes the medoids of a cluster solution.
Usage
medoids(D, cl)
Arguments
D |
square distance matrix (n rows * n columns, i.e. n individuals) or |
cl |
vector with the clustering solution (its length should be n) |
Details
A medoid is a representative object of a cluster whose average dissimilarity to all the objects in the cluster is minimal. Medoids are always members of the data set (contrary to means or centroids).
Value
Returns a numeric vector with the indexes of medoids.
Author(s)
Nicolas Robette
References
Kaufman, L. and Rousseeuw, P.J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York.
Anja Struyf, Mia Hubert & Peter J. Rousseeuw (1996). "Clustering in an Object-Oriented Environment". Journal of Statistical Software.
See Also
dist
, cluster
, hclust
, cutree
, pam
Examples
# hierarchical clustering of the Music example data set,
# partition into 3 groups
# and then computation of the medoids.
data(Music)
temp <- dichotom(Music[,1:5])
d <- dist(temp)
clus <- cutree(hclust(d), 3)
medoids(d, clus)
[Package GDAtools version 2.1 Index]