ggadd_kellipses {GDAtools} | R Documentation |
Concentration ellipses and k-inertia ellipses
Description
Adds concentration ellipses and other kinds of k-inertia ellipses for a categorical variable to a MCA cloud of individuals.
Usage
ggadd_kellipses(p, resmca, var, sel = 1:nlevels(var), axes = c(1,2),
kappa = 2, label = TRUE, label.size = 3, size = 0.5, points = TRUE,
legend = "right")
Arguments
p |
|
resmca |
object of class |
var |
Factor. The categorical variable used to plot ellipses. |
sel |
numeric vector of indexes of the categories to plot (by default, ellipses are plotted for every categories) |
axes |
numeric vector of length 2, specifying the components (axes) to plot. Default is c(1,2). |
kappa |
numeric. The kappa value (i.e. "index") of the inertia ellipses. By default, kappa = 2, which means that concentration ellipses are plotted. |
label |
Logical. Should the labels of the categories be plotted at the center of ellipses ? Default is TRUE. |
label.size |
Size of the labels of the categories at the center of ellipses. Default is 3. |
size |
Size of the lines of the ellipses. Default is 0.5. |
points |
If TRUE (default), the points are coloured according to their subcloud. |
legend |
the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector). Default is right. |
Details
If kappa=2, ellipses are called "concentration" ellipses and, for a normally shaped subcloud, contain 86.47 percents of the points of the subcloud. If kappa=1, ellipses are "indicator" ellipses and contain 39.35 percents of the points of the subcloud. If kappa=1.177, ellipses are "median" ellipses and contain 50 percents of the points of the subcloud. This function has to be used after the cloud of individuals has been drawn.
Value
a ggplot2
object
Note
Ellipses are colored according to the categories of the variable, using the default ggplot2
palette. The palette can be customized using any scale_color_*
function, such as scale_color_brewer()
, scale_color_grey()
or scale_color_manual()
.
Author(s)
Nicolas Robette
References
Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).
Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).
See Also
ggcloud_indiv
, ggadd_supvar
, ggadd_supvars
, ggadd_ellipses
, ggadd_density
, ggadd_interaction
, ggsmoothed_supvar
, ggadd_chulls
, ggadd_corr
Examples
# specific MCA of Music example data set
data(Music)
junk <- c("FrenchPop.NA", "Rap.NA", "Rock.NA", "Jazz.NA", "Classical.NA")
mca <- speMCA(Music[,1:5], excl = junk)
# concentration ellipses for Age
p <- ggcloud_indiv(mca, col = "lightgrey")
ggadd_ellipses(p, mca, Music$Age)