ggadd_ellipses {GDAtools} | R Documentation |
Confidence ellipses
Description
Adds confidence ellipses for a categorical variable to a MCA cloud of individuals
Usage
ggadd_ellipses(p, resmca, var, sel = 1:nlevels(var), axes = c(1,2),
level = 0.05, label = TRUE, label.size = 3, size = 0.5, points = TRUE,
legend = "right")
Arguments
p |
|
resmca |
object of class |
var |
Factor. The categorical variable used to plot ellipses. |
sel |
numeric vector of indexes of the categories to plot (by default, ellipses are plotted for every categories) |
axes |
numeric vector of length 2, specifying the components (axes) to plot. Default is c(1,2). |
level |
The level at which to draw an ellipse (see |
label |
Logical. Should the labels of the categories be plotted at the center of ellipses ? Default is TRUE. |
label.size |
Size of the labels of the categories at the center of ellipses. Default is 3. |
size |
Size of the lines of the ellipses. Default is 0.5. |
points |
If TRUE (default), the points are coloured according to their subcloud. |
legend |
the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector). Default is right. |
Details
A confidence ellipse aims at measuring how the "true" mean point of a category differs from its observed mean point. This is achieved by constructing a confidence zone around the observed mean point. If we choose a conventional level alpha (e.g. 0.05), a (1 - alpha) (e.g. 95 percents) confidence zone is defined as the set of possible mean points that are not significantly different from the observed mean point.
Value
a ggplot2
object
Note
Ellipses are colored according to the categories of the variable, using the default ggplot2
palette. The palette can be customized using any scale_color_*
function, such as scale_color_brewer()
, scale_color_grey()
or scale_color_manual()
.
Author(s)
Nicolas Robette
References
Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).
Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).
See Also
ggcloud_indiv
, ggadd_supvar
, ggadd_supvars
, ggadd_kellipses
, ggadd_density
, ggadd_interaction
, ggsmoothed_supvar
, ggadd_chulls
, ggadd_corr
Examples
# specific MCA of Music example data set
data(Music)
junk <- c("FrenchPop.NA", "Rap.NA", "Rock.NA", "Jazz.NA", "Classical.NA")
mca <- speMCA(Music[,1:5], excl = junk)
# confidence ellipses for Age
p <- ggcloud_indiv(mca, col = "lightgrey")
ggadd_ellipses(p, mca, Music$Age)