ggadd_chulls {GDAtools} | R Documentation |
Convex hulls for a categorical supplementary variable
Description
Adds convex hulls for a categorical variable to a MCA cloud of individuals.
Usage
ggadd_chulls(p, resmca, var, sel = 1:nlevels(var), axes = c(1,2), prop = 1,
alpha = 0.2, label = TRUE, label.size = 5, legend = "right")
Arguments
p |
|
resmca |
object of class |
var |
Factor. The categorical variable used to plot chulls. |
sel |
numeric vector of indexes of the categories to plot (by default, ellipses are plotted for every categories) |
axes |
numeric vector of length 2, specifying the components (axes) to plot. Default is c(1,2). |
prop |
proportion of all the points to be included in the hull (default is 1). |
alpha |
Numerical value from 0 to 1. Transparency of the polygon's fill. Default is O.2 |
label |
Logical. Should the labels of the categories be plotted at the center of chulls ? Default is TRUE. |
label.size |
Size of the labels of the categories at the center of chulls. Default is 5. |
legend |
the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector). Default is right. |
Value
a ggplot2
object
Note
Chulls are colored according to the categories of the variable, using the default ggplot2
palette. The palette can be customized using any scale_color_*
and scale_fill_*
functions, such as scale_color_brewer()
and scale_fill_brewer()
, scale_color_grey()
and scale_fill_grey()
, or scale_color_manual()
and scale_fill_manual()
.
Author(s)
Nicolas Robette
References
Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).
Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).
See Also
ggcloud_indiv
, ggadd_supvar
, ggadd_supvars
, ggadd_kellipses
, ggadd_ellipses
, ggadd_interaction
, ggsmoothed_supvar
, ggadd_corr
, ggadd_density
Examples
# specific MCA of Taste example data set
data(Taste)
junk <- c("FrenchPop.NA", "Rap.NA", "Rock.NA", "Jazz.NA", "Classical.NA",
"Comedy.NA", "Crime.NA", "Animation.NA", "SciFi.NA", "Love.NA",
"Musical.NA")
mca <- speMCA(Taste[,1:11], excl = junk)
# hierarchical clustering
# and partition of the individuals into 3 clusters
d <- dist(mca$ind$coord[, c(1,2)])
hca <- hclust(d, "ward.D2")
cluster <- factor(cutree(hca, 3))
# cloud of individuals
# with convex hulls for the clusters.
p <- ggcloud_indiv(mca, col = "black")
ggadd_chulls(p, mca, cluster)