BJ {GBJ} | R Documentation |
BJ.R
Description
Calculate the Berk-Jones test statistic and p-value.
Usage
BJ(test_stats, cor_mat = NULL, pairwise_cors = NULL)
Arguments
test_stats |
Vector of test statistics for each factor in the set (i.e. marginal test statistic for each SNP in a gene). |
cor_mat |
d*d matrix of the correlations between all the test statistics in the set, where d is the total number of test statistics in the set. You only need to specify EITHER cor_mat OR pairwise_cors. |
pairwise_cors |
A vector of all d(d-1)/2 pairwise correlations between the test statistics. You only need to specify EITHER cor_mat OR pairwise_cors. |
Value
A list with the elements:
BJ |
The observed Berk-Jones test statistic. |
BJ_pvalue |
The p-value of this observed value, given the size of the set and correlation structure. |
Examples
# Should return statistic = 1.243353 and p_value = 0.256618
set.seed(100)
Z_vec <- rnorm(5) + rep(1,5)
cor_Z <- matrix(data=0.2, nrow=5, ncol=5)
diag(cor_Z) <- 1
BJ(test_stats=Z_vec, cor_mat=cor_Z)
[Package GBJ version 0.5.4 Index]