| gb2 {GB2} | R Documentation |
The Generalized Beta Distribution of the Second Kind
Description
Density, distribution function, quantile function and random generation for the Generalized beta distribution of the second kind with parameters a, b, p and q.
Usage
dgb2(x, shape1, scale, shape2, shape3)
pgb2(x, shape1, scale, shape2, shape3)
qgb2(prob, shape1, scale, shape2, shape3)
rgb2(n, shape1, scale, shape2, shape3)
Arguments
x |
numeric; vector of quantiles. |
shape1 |
numeric; positive parameter. |
scale |
numeric; positive parameter. |
shape2, shape3 |
numeric; positive parameters of the Beta distribution. |
prob |
numeric; vector of probabilities. |
n |
numeric; number of observations. If |
Details
The Generalized Beta distribution of the second kind with parameters shape1 = a, scale = b, shape2 = p and shape3 = q has density
f(x)=\frac{a(x/b)^{ap-1}}{bB(p,q)(1+(x/b)^{a})^{p+q}}
for a > 0, b > 0, p > 0 and q > 0, where B(p,q) is the Beta function (beta). If Z follows a Beta distribution with parameters p and q and
y = \frac{z}{1-z},
then
x = b * y^{1/a}
follows the GB2 distribution.
Value
dgb2 gives the density, pgb2 the distribution
function, qgb2 the quantile function, and rgb2
generates random deviates.
Author(s)
Monique Graf
References
Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences, chapter 6. Wiley, Ney York.
McDonald, J. B. (1984) Some generalized functions for the size distribution of income. Econometrica, 52, 647–663.
See Also
beta for the Beta function and dbeta for the Beta distribution.
Examples
a <- 3.9
b <- 18873
p <- 0.97
q <- 1.03
x <- qgb2(0.6, a, b, p, q)
y <- dgb2(x, a, b, p, q)