multinomial_GAGA {GAGAs} | R Documentation |
Fit a multinomial model via the GAGA algorithm
Description
Fit a multinomial model the Global Adaptive Generative Adjustment algorithm
Usage
multinomial_GAGA(
X,
y,
alpha = 1,
itrNum = 50,
thresh = 0.001,
flag = TRUE,
lamda_0 = 0.001,
fdiag = TRUE,
subItrNum = 20
)
Arguments
X |
Input matrix, of dimension nobs*nvars; each row is an observation.
If the intercept term needs to be considered in the estimation process, then the first column of |
y |
a One-hot response matrix or a |
alpha |
Hyperparameter. The suggested value for alpha is 1 or 2. When the collinearity of the load matrix is serious, the hyperparameters can be selected larger, such as 5. |
itrNum |
The number of iteration steps. In general, 20 steps are enough.
If the condition number of |
thresh |
Convergence threshold for beta Change, if |
flag |
It identifies whether to make model selection. The default is |
lamda_0 |
The initial value of the regularization parameter for ridge regression. The running result of the algorithm is not sensitive to this value. |
fdiag |
It identifies whether to use diag Approximation to speed up the algorithm. |
subItrNum |
Maximum number of steps for subprocess iterations. |
Value
Coefficient matrix with K-1 columns, where K is the class number. For k=1,..,K-1, the probability
Pr(G=k|x)=exp(x^T beta_k) /(1+sum_{k=1}^{K-1}exp(x^T beta_k))
. For k=K, the probability
Pr(G=K|x)=1/(1+sum_{k=1}^{K-1}exp(x^T beta_k))
.
Examples
# multinomial
set.seed(2022)
cat("\n")
cat("Test multinomial GAGA\n")
p_size = 20
C = 3
classnames = c("C1","C2","C3","C4")
sample_size = 500
test_size = 1000
ratio = 0.5 #The ratio of zeroes in coefficients
Num = 10 # Total number of experiments
R1 = 1
R2 = 5
#Set the true coefficients
beta_true = matrix(rep(0,p_size*C),c(p_size,C))
zeroNum = round(ratio*p_size)
for(jj in 1:C){
ind = sample(1:p_size,zeroNum)
tmp = runif(p_size,0,R2)
tmp[ind] = 0
beta_true[,jj] = tmp
}
#Generate training samples
X = R1*matrix(rnorm(sample_size * p_size), ncol = p_size)
X[1:sample_size,1]=1
z = X%*%beta_true
t = exp(z)/(1+rowSums(exp(z)))
t = cbind(t,1-rowSums(t))
tt = t(apply(t,1,cumsum))
tt = cbind(rep(0,sample_size),tt)
# y = matrix(rep(0,sample_size*(C+1)),c(sample_size,C+1))
y = rep(0,sample_size)
for(jj in 1:sample_size){
tmp = runif(1,0,1)
for(kk in 1:(C+1)){
if((tmp>tt[jj,kk])&&(tmp<=tt[jj,kk+1])){
# y[jj,kk] = 1
y[jj] = kk
break
}
}
}
y = classnames[y]
fit = GAGAs(X, y,alpha=1,family = "multinomial")
Eb = fit$beta
#Prediction
#Generate test samples
X_t = R1*matrix(rnorm(test_size * p_size), ncol = p_size)
X_t[1:test_size,1]=1
z = X_t%*%beta_true
t = exp(z)/(1+rowSums(exp(z)))
t = cbind(t,1-rowSums(t))
tt = t(apply(t,1,cumsum))
tt = cbind(rep(0,test_size),tt)
y_t = rep(0,test_size)
for(jj in 1:test_size){
tmp = runif(1,0,1)
for(kk in 1:(C+1)){
if((tmp>tt[jj,kk])&&(tmp<=tt[jj,kk+1])){
y_t[jj] = kk
break
}
}
}
y_t = classnames[y_t]
Ey = predict(fit,newx = X_t)
cat("\n--------------------")
cat("\n err:", norm(Eb-beta_true,type="2")/norm(beta_true,type="2"))
cat("\n acc:", cal.w.acc(as.character(Eb!=0),as.character(beta_true!=0)))
cat("\n pacc:", cal.w.acc(as.character(Ey),as.character(y_t)))
cat("\n")