cox_GAGA {GAGAs}R Documentation

Fit a Cox model via the GAGA algorithm.

Description

Fit a Cox model via the Global Adaptive Generative Adjustment algorithm. Part of this function refers to the coxphfit function in MATLAB 2016b.

Usage

cox_GAGA(
  X,
  t,
  alpha = 2,
  itrNum = 20,
  thresh = 0.001,
  flag = TRUE,
  lamda_0 = 0.5,
  fdiag = TRUE,
  subItrNum = 20
)

Arguments

X

Input matrix, of dimension nobs*nvars; each row is an observation. If the intercept term needs to be considered in the estimation process, then the first column of X must be all 1s.

t

A n*2 matrix, one column should be named "time", indicating the survival time; the other column must be named "status", and consists of 0 and 1, 0 indicates that the row of data is censored, 1 is opposite.

alpha

Hyperparameter. The suggested value for alpha is 2 or 3.

itrNum

Maximum number of iteration steps. In general, 20 steps are enough. If the condition number of X is large, it is recommended to greatly increase the number of iteration steps.

thresh

Convergence threshold for beta Change, if max(abs(beta-beta_old))<threshold, return.

flag

It identifies whether to make model selection. The default is TRUE.

lamda_0

The initial value of the regularization parameter for ridge regression. The running result of the algorithm is not sensitive to this value.

fdiag

It identifies whether to use diag Approximation to speed up the algorithm.

subItrNum

Maximum number of steps for subprocess iterations.

Value

Coefficient vector.

Examples

set.seed(2022)
p_size = 50
sample_size = 500
test_size = 1000
R1 = 3
R2 = 1
ratio = 0.5 #The ratio of zeroes in coefficients
censoringRate = 0.25 #Proportion of censoring data in observation data
# Set the true coefficients
zeroNum = round(ratio*p_size)
ind = sample(1:p_size,zeroNum)
beta_true = runif(p_size,-R2,R2)
beta_true[ind] = 0
# Generate training samples
X = R1*matrix(rnorm(sample_size * p_size), ncol = p_size)
z = X%*%beta_true
u = runif(sample_size,0,1)
t = ((-log(1-u)/(3*exp(z)))*100)^(0.1)
cs = rep(0,sample_size)
csNum = round(censoringRate*sample_size)
ind = sample(1:sample_size,csNum)
cs[ind] = 1
t[ind] = runif(csNum,0,0.8)*t[ind]
y = cbind(t,1 - cs)
colnames(y) = c("time", "status")
#Estimation
fit = GAGAs(X,y,alpha=2,family="cox")
Eb = fit$beta

#Generate testing samples
X_t = R1*matrix(rnorm(test_size * p_size), ncol = p_size)
z = X_t%*%beta_true
u = runif(test_size,0,1)
t = ((-log(1-u)/(3*exp(z)))*100)^(0.1)
cs = rep(0,test_size)
csNum = round(censoringRate*test_size)
ind = sample(1:test_size,csNum)
cs[ind] = 1
t[ind] = runif(csNum,0,0.8)*t[ind]
y_t = cbind(t,1 - cs)
colnames(y_t) = c("time", "status")
#Prediction
pred = predict(fit,newx=X_t)

cat("\n err:", norm(Eb-beta_true,type="2")/norm(beta_true,type="2"))
cat("\n acc:", cal.w.acc(as.character(Eb!=0),as.character(beta_true!=0)))
cat("\n Cindex:", cal.cindex(pred,y_t))

[Package GAGAs version 0.6.2 Index]