cal.F1Score {GAGAs} | R Documentation |
Calculate F1 score for classification, the inputs must be characters, and each of these elements must be either 'FALSE' or 'TRUE'.
Description
Calculate F1 score for classification, the inputs must be characters, and each of these elements must be either 'FALSE' or 'TRUE'.
Usage
cal.F1Score(predictions, truelabels)
Arguments
predictions |
predictions |
truelabels |
true labels |
Value
F1 score
Examples
set.seed(2022)
p_size = 30
sample_size=300
R1 = 3
R2 = 2
ratio = 0.5 #The ratio of zeroes in coefficients
# Set the true coefficients
zeroNum = round(ratio*p_size)
ind = sample(1:p_size,zeroNum)
beta_true = runif(p_size,0,R2)
beta_true[ind] = 0
X = R1*matrix(rnorm(sample_size * p_size), ncol = p_size)
y=X%*%beta_true + rnorm(sample_size,mean=0,sd=2)
# Estimation
fit = GAGAs(X,y,alpha = 3,family="gaussian")
Eb = fit$beta
cat("\n F1 score:", cal.F1Score(as.character(Eb!=0),as.character(beta_true!=0)))
[Package GAGAs version 0.6.2 Index]