FuzzyNumberList {FuzzyStatTraEOO} | R Documentation |
'FuzzyNumberList' is a child class of 'StatList'.
Description
'FuzzyNumberList' must contain valid 'FuzzyNumbers'. This class implements a version of the empty 'StatList' methods.
Super class
FuzzyStatTraEOO::StatList
-> FuzzyNumberList
Methods
Public methods
Inherited methods
Method new()
This method creates a 'FuzzyNumberList' object with the columns and dimensions attributes set where the 'FuzzyNumbers' must be valid.
Usage
FuzzyNumberList$new(numbers = NA)
Arguments
numbers
is a list of dimension nl x 3 x n which contains n fuzzy numbers. nl is the number of considered
\alpha
-levels and 3 is the number of columns of the list. The first column represents the number of considered\alpha
-levels, the second one represents their infimum values and the third and last column represents their supremum values.
Details
See examples.
Returns
The FuzzyNumberList object created with the columns and dimensions attributes set where the 'FuzzyNumbers' must be valid.
Examples
# Example 1: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0,-1.5,-1.0,-1.0, 2.0, 1.5, 1.0), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0,-1.5,-1.25,-1.0, 3.0, 2.0, 1.0), dim = c(3, 3))))) # Example 2: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2.0, 1.5), dim = c(2, 3)))))
Method dthetaphi()
This method calculates the mid/spr distance between the FuzzyNumbers contained in the current object and the one passed as parameter. See Blanco-Fernandez et al. (2013) [1].
Usage
FuzzyNumberList$dthetaphi(s = NA, a = 1, b = 1, theta = 1)
Arguments
s
FuzzyNumberList containing FuzzyNumbers characterized by means of nl
\alpha
-levels each. The\alpha
-levels of the FuzzyNumberList s should coincide with the ones of the current FuzzyNumberList (the method checks this condition).a
real number > 0, by default a=1. It is the first parameter of a beta distribution which corresponds to a weighting measure on [0,1].
b
real number > 0, by default b=1. It is the second parameter of a beta distribution which corresponds to a weighting measure on [0,1].
theta
real number > 0, by default theta=1. It is the weight of the spread in the mid/spr distance.
Details
See examples.
Returns
a matrix containing the mid/spr distances between the two previous mentioned FuzzyNumberLists. If the body's method inner conditions are not met, NA will be returned.
Examples
# Example 1: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, -1.0, -1.0, 1.5, 1.0), dim = c(2, 3))) ))$dthetaphi( FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 1.0, -0.5, 0, 1.5, 1), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, 1, 1.5, 1.5, 1.5), dim = c(2, 3))))), 1,5,1) # Example 2: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1.5, -1.0, -1.0, 2.0, 1.5, 1.0), dim = c(3, 3))),FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1.5, -1.25, -1.0, 3.0, 2.0, 1.0), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 0, 1.0, 1.0, 2.5, 2.0, 1.5), dim = c(3, 3))),FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 0.5 , 1, 1.5, 3, 2.0, 2), dim = c(3, 3)))))$dthetaphi(FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0,1,1.25,1.5, 2, 1.75, 1.5), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0,-1,-0.5,0, 1.5, 1.25, 1), dim = c(3, 3)))) ), 1, 1, 1/3) # Example 3: F=Simulation$new()$simulCase1(10L) S=Simulation$new()$simulCase1(20L) F=F$transfTra() S=S$transfTra() F$dthetaphi(S,1,5,1) # Example 4: F=Simulation$new()$simulCase1(10L) S=Simulation$new()$simulCase1(10L) F$dthetaphi(S,2,1,1/3) # Example 5: F=Simulation$new()$simulCase1(10L) S=Simulation$new()$simulCase1(10L) F=F$transfTra() S=S$transfTra(50L) F$dthetaphi(S,2,1,1)
Method dwablphi()
This method calculates the (\phi
,\theta
)-wabl/ldev/rdev distance between
the 'FuzzyNumbers' contained in two 'FuzzyNumberLists'. The method checks
if the \alpha
-levels of all 'FuzzyNumbers' coincide.
See Sinova et al. (2013) [3] and Sinova et al. (2016) [4].
Usage
FuzzyNumberList$dwablphi(s = NA, a = 1, b = 1, theta = 1)
Arguments
s
FuzzyNumberList containing FuzzyNumbers characterized by means of nl
\alpha
-levels each. The\alpha
-levels should coincide with ones of the other FuzzyNumberList (the method checks this condition).a
real number > 0, by default a=1. It is the first parameter of a beta distribution which corresponds to a weighting measure on [0,1].
b
real number > 0, by default b=1. It is the second parameter of a beta distribution which corresponds to a weighting measure on [0,1].
theta
real number > 0, by default theta=1. It is the weight of the ldev and rdev in the (
\phi
,\theta
)-wabl/ldev/rdev distance.
Details
See examples.
Returns
a matrix containing the (\phi
,\theta
)-wabl/ldev/rdev distances
between the two previous mentioned FuzzyNumberLists. If the body's
method inner conditions are not met, NA will be returned.
Examples
# Example 1: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, -1.0, -1.0, 1.5, 1.0), dim = c(2, 3))) ))$dwablphi( FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 1.0, -0.5, 0, 1.5, 1), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, 1, 1.5, 1.5, 1.5), dim = c(2, 3))))), 1,5,1) # Example 2: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1.5, -1.0, -1.0, 2.0, 1.5, 1.0), dim = c(3, 3))),FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1.5, -1.25, -1.0, 3.0, 2.0, 1.0), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 0, 1.0, 1.0, 2.5, 2.0, 1.5), dim = c(3, 3))),FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 0.5 , 1, 1.5, 3, 2.0, 2), dim = c(3, 3)))))$dwablphi(FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0,1,1.25,1.5, 2, 1.75, 1.5), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0,-1,-0.5,0, 1.5, 1.25, 1), dim = c(3, 3)))) ), 1, 1, 1/3) # Example 3: F=Simulation$new()$simulCase1(3L) S=Simulation$new()$simulCase1(4L) F=F$transfTra() S=S$transfTra() F$dwablphi(S,2,1,1) # Example 4: F=Simulation$new()$simulCase1(10L) S=Simulation$new()$simulCase1(10L) F$dwablphi(S) # Example 5: F=Simulation$new()$simulCase1(10L) S=Simulation$new()$simulCase1(10L) F=F$transfTra() S=S$transfTra(50L) F$dwablphi(S,2,1,1)
Method rho1()
This method calculates the 1-norm distance between the 'FuzzyNumbers' contained
in two 'FuzzyNumberLists'. The method checks if the \alpha
-levels of
all 'FuzzyNumbers' coincide.
See Diamond and Kloeden. (1990) [2].
Usage
FuzzyNumberList$rho1(s = NA)
Arguments
s
FuzzyNumberList containing FuzzyNumbers characterized by means of nl
\alpha
-levels each. The method checks that the\alpha
-levels should coincide with ones of the other FuzzyNumberList.
Details
See examples.
Returns
a matrix containing the 1-norm distances between the two previous mentioned FuzzyNumberLists. If the body's method inner conditions are not met, NA will be returned.
Examples
# Example 1: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, -1.0, -1.0, 1.5, 1.0), dim = c(2, 3))) ))$rho1( FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 1.0, -0.5, 0, 1.5, 1), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, 1, 1.5, 1.5, 1.5), dim = c(2, 3)))))) # Example 2: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1.5, -1.0, -1.0, 2.0, 1.5, 1.0), dim = c(3, 3))),FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1.5, -1.25, -1.0, 3.0, 2.0, 1.0), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 0, 1.0, 1.0, 2.5, 2.0, 1.5), dim = c(3, 3))),FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 0.5 , 1, 1.5, 3, 2.0, 2), dim = c(3, 3)))))$rho1(FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0,1,1.25,1.5, 2, 1.75, 1.5), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0,-1,-0.5,0, 1.5, 1.25, 1), dim = c(3, 3)))))) # Example 3: F=Simulation$new()$simulCase1(4L) S=Simulation$new()$simulCase1(5L) F=F$transfTra() S=S$transfTra() F$rho1(S) S$rho1(F) # Example 4: F=Simulation$new()$simulCase1(4L) S=Simulation$new()$simulCase1(5L) F=F$transfTra() S=S$transfTra(10L) F$rho1(S) S$rho1(F)
Method addFuzzyNumber()
This method adds a 'FuzzyNumber' to the current collection of fuzzy numbers. Therefore, the dimensions' field is increased in a unit.
Usage
FuzzyNumberList$addFuzzyNumber(n = NA, verbose = TRUE)
Arguments
n
is the FuzzyNumber to be added to the current collection of fuzzy numbers.
verbose
if TRUE the messages are written to the console unless the user actively decides to set verbose=FALSE.
Details
See examples.
Returns
NULL.
Examples
# Example 1: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3)))))$addFuzzyNumber( FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3)))) # Example 2: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3))) ))$addFuzzyNumber( FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 1, 1.25, 1.5, 2, 1.75, 1.5), dim = c(3, 3))))
Method removeFuzzyNumber()
This method removes a 'FuzzyNumber' to the current collection of fuzzy numbers. Therefore, the dimensions' field is decreased in a unit.
Usage
FuzzyNumberList$removeFuzzyNumber(i = NA, verbose = TRUE)
Arguments
i
is the position of the FuzzyNumber to be removed in the current collection of fuzzy numbers.
verbose
if TRUE the messages are written to the console unless the user actively decides to set verbose=FALSE.
Details
See examples.
Returns
NULL.
Examples
# Example 1: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, -1, -0.5, 1.5, 1.25), dim = c(2, 3))) ))$removeFuzzyNumber(1L) # Example 2: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 1, 1.25, 1.5, 2, 1.75, 1.5), dim = c(3, 3))) ))$removeFuzzyNumber(2L)
Method getDimension()
This method gives the number contained in the dimension passed as parameter when the dimension is greater than 0 and not greater than the dimensions of the 'FuzzyNumberList's' numbers array.
Usage
FuzzyNumberList$getDimension(i = NA)
Arguments
i
is the dimension of the FuzzyNumber wanted to be retrieved.
Details
See examples.
Returns
The FuzzyNumber contained in the dimension passed as parameter or an error if the dimension is not valid.
Examples
# Example 1: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 1, 1.25, 1.5, 2, 1.75, 1.5), dim = c(3, 3))) ))$getDimension(1L) # Example 2: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 1, 1.25, 1.5, 2, 1.75, 1.5), dim = c(3, 3))) ))$getDimension(2L)
Method plot()
This method shows in a graph the values of the attribute numbers of the corresponding 'FuzzyNumberList'.
Usage
FuzzyNumberList$plot(color = "grey")
Arguments
color
is the color of the lines representing the numbers to be shown in the graph. The default value is grey, other colors can be specified, the option palette() too.
Details
See examples.
Returns
a graph with the values of the attribute numbers of the corresponding 'FuzzyNumberList'.
Examples
# Example 1: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 1, 1.25, 1.5, 2, 1.75, 1.5), dim = c(3, 3))) ))$plot() # Example 2: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, -1.0, -1.0, 1.5, 1.0), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, -0.5, 0, 1.5, 1), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, 1, 1.5, 1.85, 1.7), dim = c(2, 3)))) )$plot("blue") # Example 3: Simulation$new()$simulCase1(8L)$transfTra()$plot(palette()) # Example 4: Simulation$new()$simulCase1(5L)$transfTra()$plot(palette()[2:6])
Method getLength()
This method returns the number of dimensions that are equivalent to the number of 'FuzzyNumbers' in the corresponding 'FuzzyNumberList'.
Usage
FuzzyNumberList$getLength()
Details
See examples.
Returns
the number of dimensions that are equivalent to the number of 'FuzzyNumbers' in the corresponding 'FuzzyNumberList'.
Examples
# Example 1: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 1, 1.25, 1.5, 2, 1.75, 1.5), dim = c(3, 3))) ))$getLength() # Example 2: FuzzyNumberList$new(c( FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, -1.0, -1.0, 1.5, 1.0), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, -0.5, 0, 1.5, 1), dim = c(2, 3))), FuzzyNumber$new(array(c(0.0, 1.0, 1, 1.5, 1.5, 1.5), dim = c(2, 3)))) )$getLength()
Method clone()
The objects of this class are cloneable with this method.
Usage
FuzzyNumberList$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Note
In case you find (almost surely existing) bugs or have recommendations for improving the method, comments are welcome to the above mentioned mail addresses.
Author(s)
(s) Andrea Garcia Cernuda <uo270115@uniovi.es>, Asun Lubiano <lubiano@uniovi.es>, Sara de la Rosa de Saa
References
[1] Blanco-Fernandez, A.; Casals, R.M.; Colubi, A.; Corral, N.; Garcia-Barzana, M.; Gil, M.A.; Gonzalez-Rodriguez, G.; Lopez, M.T.; Lubiano, M.A.; Montenegro, M.; Ramos-Guajardo, A.B.; de la Rosa de Saa, S.; Sinova, B.: Random fuzzy sets: A mathematical tool to develop statistical fuzzy data analysis, Iranian Journal on Fuzzy Systems 10(2), 1-28 (2013)
[2] Diamond, P.; Kloeden, P.: Metric spaces of fuzzy sets, Fuzzy Sets and Systems 35, 241-249 (1990)
[3] Sinova, B.; de la Rosa de Saa, S.; Gil, M.A.: A generalized L1-type metric between fuzzy numbers for an approach to central tendency of fuzzy data, Information Sciences 242, 22-34 (2013)
[4] Sinova, B.; Gil, M.A.; Van Aelst, S.: M-estimates of location for the robust central tendency of fuzzy data, IEEE Transactions on Fuzzy Systems 24(4), 945-956 (2016)
Examples
## ------------------------------------------------
## Method `FuzzyNumberList$new`
## ------------------------------------------------
# Example 1:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0,-1.5,-1.0,-1.0, 2.0, 1.5, 1.0), dim =
c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0,-1.5,-1.25,-1.0, 3.0, 2.0,
1.0), dim = c(3, 3)))))
# Example 2:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2.0, 1.5), dim = c(2, 3)))))
## ------------------------------------------------
## Method `FuzzyNumberList$dthetaphi`
## ------------------------------------------------
# Example 1:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, -1.0, -1.0, 1.5, 1.0), dim = c(2, 3)))
))$dthetaphi(
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 1.0, -0.5, 0, 1.5, 1), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, 1, 1.5, 1.5, 1.5), dim = c(2, 3))))),
1,5,1)
# Example 2:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1.5, -1.0, -1.0, 2.0, 1.5, 1.0), dim =
c(3, 3))),FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1.5, -1.25, -1.0, 3.0, 2.0,
1.0), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 0, 1.0, 1.0, 2.5,
2.0, 1.5), dim = c(3, 3))),FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 0.5 , 1, 1.5,
3, 2.0, 2), dim = c(3, 3)))))$dthetaphi(FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0,1,1.25,1.5, 2, 1.75, 1.5), dim = c(3, 3))),
FuzzyNumber$new(array(c(0.0, 0.5, 1.0,-1,-0.5,0, 1.5, 1.25, 1), dim = c(3, 3))))
), 1, 1, 1/3)
# Example 3:
F=Simulation$new()$simulCase1(10L)
S=Simulation$new()$simulCase1(20L)
F=F$transfTra()
S=S$transfTra()
F$dthetaphi(S,1,5,1)
# Example 4:
F=Simulation$new()$simulCase1(10L)
S=Simulation$new()$simulCase1(10L)
F$dthetaphi(S,2,1,1/3)
# Example 5:
F=Simulation$new()$simulCase1(10L)
S=Simulation$new()$simulCase1(10L)
F=F$transfTra()
S=S$transfTra(50L)
F$dthetaphi(S,2,1,1)
## ------------------------------------------------
## Method `FuzzyNumberList$dwablphi`
## ------------------------------------------------
# Example 1:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, -1.0, -1.0, 1.5, 1.0), dim = c(2, 3)))
))$dwablphi(
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 1.0, -0.5, 0, 1.5, 1), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, 1, 1.5, 1.5, 1.5), dim = c(2, 3))))),
1,5,1)
# Example 2:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1.5, -1.0, -1.0, 2.0, 1.5, 1.0), dim =
c(3, 3))),FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1.5, -1.25, -1.0, 3.0, 2.0,
1.0), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 0, 1.0, 1.0, 2.5,
2.0, 1.5), dim = c(3, 3))),FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 0.5 , 1, 1.5,
3, 2.0, 2), dim = c(3, 3)))))$dwablphi(FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0,1,1.25,1.5, 2, 1.75, 1.5), dim = c(3, 3))),
FuzzyNumber$new(array(c(0.0, 0.5, 1.0,-1,-0.5,0, 1.5, 1.25, 1), dim = c(3, 3))))
), 1, 1, 1/3)
# Example 3:
F=Simulation$new()$simulCase1(3L)
S=Simulation$new()$simulCase1(4L)
F=F$transfTra()
S=S$transfTra()
F$dwablphi(S,2,1,1)
# Example 4:
F=Simulation$new()$simulCase1(10L)
S=Simulation$new()$simulCase1(10L)
F$dwablphi(S)
# Example 5:
F=Simulation$new()$simulCase1(10L)
S=Simulation$new()$simulCase1(10L)
F=F$transfTra()
S=S$transfTra(50L)
F$dwablphi(S,2,1,1)
## ------------------------------------------------
## Method `FuzzyNumberList$rho1`
## ------------------------------------------------
# Example 1:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, -1.0, -1.0, 1.5, 1.0), dim = c(2, 3)))
))$rho1(
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 1.0, -0.5, 0, 1.5, 1), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, 1, 1.5, 1.5, 1.5), dim = c(2, 3))))))
# Example 2:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1.5, -1.0, -1.0, 2.0, 1.5, 1.0), dim =
c(3, 3))),FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1.5, -1.25, -1.0, 3.0, 2.0,
1.0), dim = c(3, 3))), FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 0, 1.0, 1.0, 2.5,
2.0, 1.5), dim = c(3, 3))),FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 0.5 , 1, 1.5,
3, 2.0, 2), dim = c(3, 3)))))$rho1(FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0,1,1.25,1.5, 2, 1.75, 1.5), dim = c(3, 3))),
FuzzyNumber$new(array(c(0.0, 0.5, 1.0,-1,-0.5,0, 1.5, 1.25, 1), dim = c(3, 3))))))
# Example 3:
F=Simulation$new()$simulCase1(4L)
S=Simulation$new()$simulCase1(5L)
F=F$transfTra()
S=S$transfTra()
F$rho1(S)
S$rho1(F)
# Example 4:
F=Simulation$new()$simulCase1(4L)
S=Simulation$new()$simulCase1(5L)
F=F$transfTra()
S=S$transfTra(10L)
F$rho1(S)
S$rho1(F)
## ------------------------------------------------
## Method `FuzzyNumberList$addFuzzyNumber`
## ------------------------------------------------
# Example 1:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3)))))$addFuzzyNumber(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3))))
# Example 2:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3)))
))$addFuzzyNumber( FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 1, 1.25, 1.5, 2, 1.75,
1.5), dim = c(3, 3))))
## ------------------------------------------------
## Method `FuzzyNumberList$removeFuzzyNumber`
## ------------------------------------------------
# Example 1:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, -1, -0.5, 1.5, 1.25), dim = c(2, 3)))
))$removeFuzzyNumber(1L)
# Example 2:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3))),
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 1, 1.25, 1.5, 2, 1.75, 1.5), dim = c(3, 3)))
))$removeFuzzyNumber(2L)
## ------------------------------------------------
## Method `FuzzyNumberList$getDimension`
## ------------------------------------------------
# Example 1:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3))),
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 1, 1.25, 1.5, 2, 1.75, 1.5), dim = c(3, 3)))
))$getDimension(1L)
# Example 2:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3))),
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 1, 1.25, 1.5, 2, 1.75, 1.5), dim = c(3, 3)))
))$getDimension(2L)
## ------------------------------------------------
## Method `FuzzyNumberList$plot`
## ------------------------------------------------
# Example 1:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3))),
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 1, 1.25, 1.5, 2, 1.75, 1.5), dim = c(3, 3)))
))$plot()
# Example 2:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, -1.0, -1.0, 1.5, 1.0), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, -0.5, 0, 1.5, 1), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, 1, 1.5, 1.85, 1.7), dim = c(2, 3))))
)$plot("blue")
# Example 3:
Simulation$new()$simulCase1(8L)$transfTra()$plot(palette())
# Example 4:
Simulation$new()$simulCase1(5L)$transfTra()$plot(palette()[2:6])
## ------------------------------------------------
## Method `FuzzyNumberList$getLength`
## ------------------------------------------------
# Example 1:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, -1, -0.5, 0, 1.5, 1.25, 1), dim = c(3, 3))),
FuzzyNumber$new(array(c(0.0, 0.5, 1.0, 1, 1.25, 1.5, 2, 1.75, 1.5), dim = c(3, 3)))
))$getLength()
# Example 2:
FuzzyNumberList$new(c(
FuzzyNumber$new(array(c(0.0, 1.0, -1.5, -1.0, 2, 1), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, -1.0, -1.0, 1.5, 1.0), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, -0.5, 0, 1.5, 1), dim = c(2, 3))),
FuzzyNumber$new(array(c(0.0, 1.0, 1, 1.5, 1.5, 1.5), dim = c(2, 3))))
)$getLength()