EpistemicTest {FuzzySimRes}R Documentation

Apply epistemic test for one or two fuzzy samples.

Description

'EpistemicTest' calculates the p-value for the given real-valued statistical test using one of the epistemic bootstrap approaches.

Usage

EpistemicTest(sample1, sample2, algorithm = "avs", ...)

Arguments

sample1

Sample of fuzzy numbers given in the form of a list or as a single number.

sample2

Sample of fuzzy numbers given in the form of a list or as a single number (two-sample test case) or NULL (one-sample test case).

algorithm

Type of the epistemic bootstrap algorithm used to calculate the output p-value (possible values: avs, ms, res).

...

Additional arguments passed to the epistemic test.

Details

This is a general procedure that can be used to invoke other epistemic bootstrap tests: AverageStatisticEpistemicTest (if the algorithm is set to "avs"), MultiStatisticEpistemicTest (if algorithm="ms"), and ResamplingStatisticEpistemicTest (for algorithm="res"). For additional details about these procedures and their parameters, see the respective functions.

Value

The output is given in the form of a real number (the p-value) for the selected statistical test.

References

Grzegorzewski, P., Romaniuk, M. (2022) Bootstrap Methods for Epistemic Fuzzy Data. International Journal of Applied Mathematics and Computer Science, 32(2)

Grzegorzewski, P., Romaniuk, M. (2022) Bootstrapped Kolmogorov-Smirnov Test for Epistemic Fuzzy Data. Communications in Computer and Information Science, CCIS 1602, pp. 494-507, Springer

Gagolewski, M., Caha, J. (2021) FuzzyNumbers Package: Tools to deal with fuzzy numbers in R. R package version 0.4-7, https://cran.r-project.org/web/packages=FuzzyNumbers

See Also

MultiStatisticEpistemicTest for the epistemic bootstrap test related to multi-statistic approach, ResamplingStatisticEpistemicTest for the epistemic bootstrap test related to resampling statistics, AverageStatisticEpistemicTest for the epistemic bootstrap test related to averaging statistics,

Other epistemic bootstrap statistical test: AverageStatisticEpistemicTest(), MultiStatisticEpistemicTest(), ResamplingStatisticEpistemicTest()

Examples


# seed PRNG

set.seed(1234)

# generate two independent initial fuzzy samples

list1<-SimulateSample(20,originalPD="rnorm",parOriginalPD=list(mean=0,sd=1),
incrCorePD="rexp", parIncrCorePD=list(rate=2),
suppLeftPD="runif",parSuppLeftPD=list(min=0,max=0.6),
suppRightPD="runif", parSuppRightPD=list(min=0,max=0.6),
type="trapezoidal")


list2<-SimulateSample(20,originalPD="rnorm",parOriginalPD=list(mean=0,sd=1),
incrCorePD="rexp", parIncrCorePD=list(rate=2),
suppLeftPD="runif",parSuppLeftPD=list(min=0,max=0.6),
suppRightPD="runif", parSuppRightPD=list(min=0,max=0.6),
type="trapezoidal")

# apply the Kolmogorov-Smirnov two sample test for two different samples
# with the average statistics approach

EpistemicTest(list1$value,list2$value,cutsNumber = 30)

# apply the Kolmogorov-Smirnov two sample test for two different samples
# with the multi-statistic and antithetic approach

EpistemicTest(list1$value,list2$value,algorithm = "ms",bootstrapMethod = "anti")



[Package FuzzySimRes version 0.4.0 Index]