EpistemicCorrectedVariance {FuzzySimRes} | R Documentation |
Calculate the corrected variance using the epistemic bootstrap.
Description
'EpistemicCorrectedVariance' calculates the corrected estimator of the variance for the fuzzy sample using the epistemic bootstrap approach.
Usage
EpistemicCorrectedVariance(
fuzzySample,
cutsNumber = 1,
bootstrapMethod = "std",
...
)
Arguments
fuzzySample |
Sample of fuzzy numbers (given in the form of a list or as a single number) or a matrix with already sampled values (i.e.
output of function |
cutsNumber |
Number of cuts used in the epistemic bootstrap. |
bootstrapMethod |
The standard ( |
... |
Possible parameters passed to other functions. |
Details
For the initial sample given by fuzzySample
, the function calculates the corrected estimator of the variance
using the standard (if bootstrapMethod
is set to
"std"
) or the antithetic (when bootstrapMethod="anti"
) epistemic bootstrap.
The initial sample should be given in the form of a list of numbers or a single number.
These values have to be the fuzzy numbers defined in the FuzzyNumbers
package.
The corrected estimator of the variance separates the within- and between-group variations.
For the details, see (Grzegorzewski, Romaniuk, 2022a).
If, instead of fuzzy sample, the matrix is given by the parameter fuzzySample
, then this matrix is treated
as the direct output from the epistemic or the antithetic bootstrap.
Then, the corrected estimator of the variance is directly calculated.
Value
The output is given in the form of a real number (the estimator of the variance).
References
Grzegorzewski, P., Romaniuk, M. (2022) Bootstrap Methods for Epistemic Fuzzy Data. International Journal of Applied Mathematics and Computer Science, 32(2)
Grzegorzewski, P., Romaniuk, M. (2022) Bootstrapped Kolmogorov-Smirnov Test for Epistemic Fuzzy Data. Communications in Computer and Information Science, CCIS 1602, pp. 494-507, Springer
Gagolewski, M., Caha, J. (2021) FuzzyNumbers Package: Tools to deal with fuzzy numbers in R. R package version 0.4-7, https://cran.r-project.org/web/packages=FuzzyNumbers
See Also
EpistemicMean
for the epistemic estimator of the mean,
EpistemicEstimator
for the general function concerning the epistemic estimator calculation
Other epistemic estimators:
EpistemicMean()
Examples
# seed PRNG
set.seed(1234)
# generate an initial fuzzy sample
list1<-SimulateSample(20,originalPD="rnorm",parOriginalPD=list(mean=0,sd=1),
incrCorePD="rexp", parIncrCorePD=list(rate=2),
suppLeftPD="runif",parSuppLeftPD=list(min=0,max=0.6),
suppRightPD="runif", parSuppRightPD=list(min=0,max=0.6),
type="trapezoidal")
# calculate the corrected variance using the standard epistemic bootstrap approach
EpistemicCorrectedVariance(list1$value,cutsNumber = 30)
# calculate the corrected variance using the antithetic epistemic bootstrap approach
EpistemicCorrectedVariance(list1$value,cutsNumber = 30,bootstrapMethod="anti")
# use the epistemic bootstrap
list1Epistemic<-EpistemicBootstrap(list1$value,cutsNumber = 10)
# calculate the standard deviation using the obtained output
EpistemicCorrectedVariance(list1Epistemic)