fuzzyqCI {FuzzyQ} | R Documentation |
Compute Confidence Intervals of Clustering Metrics
Description
Computes confidence intervals of clustering metrics based on the bootstrap
replicates produced by fuzzyqBoot
.
Usage
fuzzyqCI(fq.bs, fq = NULL, method = "pct", c.level = 0.95)
Arguments
fq.bs |
A list returned by |
fq |
A list of class |
method |
String. Specify the method to compute confidence intervals. Any of the following: "pct" (percentile, the default), "bc" (bias corrected), "bca" (bias corrected and accelerated). |
c.level |
Number within [0,1]. Specify the confidence interval level. Default is 0.95. |
Value
A matrix with upper and lower confidence interval limits of clustering metrics.
Examples
data(antsA)
FQAnts <- fuzzyq(antsA, sorting = TRUE)
# Compute species Commonness Indices of species of 1,000 bootstrap
# replicates:
BS.FQAnts <- fuzzyqBoot (antsA, N = 1e3, level='spp')
# Compute 95 % confidence intervals, percentile method, default values:
BS.sppCI1 <- fuzzyqCI(BS.FQAnts)
# Alternatively, 95 % confidence intervals, bias corrected and accelerated
# method:
BS.sppCI2 <- fuzzyqCI(BS.FQAnts, fq=FQAnts, method = "bca")
# Compute global metrics of 1,000 boostrap replicates:
BS.global <- fuzzyqBoot (antsA, N = 1e3, level='global')
# Compute 95 % confidence intervals, bias corrected and accelerated method:
BS.globalCI <- fuzzyqCI(BS.global, fq=FQAnts, method = "bca")
[Package FuzzyQ version 0.1.0 Index]