alphacut {FuzzyNumbers} | R Documentation |
Compute Alpha-Cuts
Description
If A
is a fuzzy number, then its \alpha
-cuts are
always in form of intervals.
Moreover, the \alpha
-cuts form a nonincreasing
chain w.r.t. alpha
.
Usage
## S4 method for signature 'FuzzyNumber,numeric'
alphacut(object, alpha)
Arguments
object |
a fuzzy number |
alpha |
numeric vector with elements in [0,1] |
Value
Returns a matrix with two columns (left and right alha cut bounds).
if some elements in alpha
are not in [0,1], then NA
is set.
See Also
Other FuzzyNumber-method:
Arithmetic
,
Extract
,
FuzzyNumber-class
,
FuzzyNumber
,
alphaInterval()
,
ambiguity()
,
as.FuzzyNumber()
,
as.PiecewiseLinearFuzzyNumber()
,
as.PowerFuzzyNumber()
,
as.TrapezoidalFuzzyNumber()
,
as.character()
,
core()
,
distance()
,
evaluate()
,
expectedInterval()
,
expectedValue()
,
integrateAlpha()
,
piecewiseLinearApproximation()
,
plot()
,
show()
,
supp()
,
trapezoidalApproximation()
,
value()
,
weightedExpectedValue()
,
width()
Other alpha_cuts:
core()
,
supp()
Examples
A <- TrapezoidalFuzzyNumber(1, 2, 3, 4)
alphacut(A, c(-1, 0.4, 0.2))