is.increasing.on.y {FuzzyNumbers.Ext.2} | R Documentation |
Diagnosis an increasing two-variable function toward y
Description
is.increasing.on.y
tests for any fixed x
from x.bound
, if the introduced two-variable function f(x,y)
is increasing toward y
on the considered y.bound
or not.
In other words, is.increasing.on.y
returns TRUE
if the introduced function f(x,y)
is increasing function of y
on the considered y.bound
(for any fixed x
in x.bound
); and it returns FALSE
otherwise.
The goal of introducing function is.increasing.on.y
in package FuzzyNumbers.Ext.2
is using in function f2apply
.
Usage
is.increasing.on.y(fun, x.bound = c(-1, 1), y.bound = c(-1, 1), step = 0.01)
Arguments
fun |
a two-variable R function |
x.bound |
a vector with two real ordered elements which determine a bound on x-axis for checking the monotonic |
y.bound |
a vector with two real ordered elements which determine a bound on y-axis for checking the monotonic |
step |
a positive real-valued number which determine the increment of the considered sequence for checking the monotonic of the considered function. The default of |
Value
TRUE
for two-variable function f(x,y) which is increasing toward y on y.bound
(for any fixed x
from x.bound
); and otherwise FALSE
See Also
is.increasing
, is.increasing.on.x
Examples
is.increasing.on.y(fun=function(x,y) 2*x+y, x.bound=c(0,2), y.bound=c(1,2), step=.2)
f = function(x,y) 5*x+y^2
is.increasing.on.y(f, x.bound=c(0,2), y.bound=c(0,2))
is.increasing.on.y(f, x.bound=c(-2,2), y.bound=c(0,2))
is.increasing.on.y(f, x.bound=c(0,2), y.bound=c(-2,2))
H = function(x,y) pnorm(x)+y^2
is.increasing.on.x(H)
is.increasing.on.y(H)
is.increasing.on.y(H, x.bound=c(-3,3), y.bound=c(0,3))
## The function is currently defined as
function (fun, x.bound = c(-1, 1), y.bound = c(-1, 1), step = 0.01)
{
x = seq(x.bound[1], x.bound[2], by = step)
for (i in 1:length(x)) {
g = function(y) fun(x[i], y)
if (is.increasing(g, y.bound, step) == FALSE) {
return(FALSE)
}
}
return(TRUE)
}