f2apply {FuzzyNumbers.Ext.2}R Documentation

Apply a two-variable function on two fuzzy numbers

Description

Suppose that we are going to put two fuzzy numbers x and y into the monotonic two-variable function f(x,y). A usual approach is using Zadeh's extension Principle which has a complex computation. Function f2apply applies easily two fuzzy numbers to a monotonic two-variable function. Although the theory of f2apply computation is based on the Zadeh's extension Principle, but it works with the \alpha-cuts of two inputted fuzzy numbers for all \alpha \in (0,1]. It must be mentioned that the ability of computing \alpha-cuts of the result is added to the Version 2.0.

Usage

f2apply(x, y, fun, knot.n=10, I.O.plot="TRUE", ...)

Arguments

x

the first fuzzy number, which must be according to the format of FuzzyNumbers package

y

the second fuzzy number, which must be according to the format of FuzzyNumbers package

fun

a two-variable function which is monotone function on the supports of x and y fuzzy numbers

knot.n

the number of knots; see package FuzzyNumbers

I.O.plot

a logical argument with default TRUE. If I.O.plot=TRUE, then three membership functions of x, y (Inputted fuzzy numbers) and f(x,y) (Outputted fuzzy number) are drawn in a figure. If I.O.plot=FALSE, then just the membership function of Outputted fuzzy number f(x,y) will be shown in figure.

...

additional arguments passed from plot

Value

This function returns piecewise linear fuzzy number f(x,y) and also plot the result.

fun.rep

describes the monotonic behavior of the considered function

cuts

returns the \alpha-cuts of the computed fuzzy number f(x,y)

core

returns the core of the computed fuzzy number f(x,y)

support

returns the support of the computed fuzzy number f(x,y)

Note

f2apply is an extended version of fapply from package FuzzyNumbers. The duty of functions fapply and f2apply are applying one-variable and two-variable function on fuzzy numbers. Two imported fuzzy numbers into f2apply must be piecewised by PiecewiseLinearFuzzyNumber function in package FuzzyNumbers. Moreover, the considered function f(x,y) must be monotone on x and y.

Author(s)

Abbas Parchami

References

Gagolewski, M., Caha, J., FuzzyNumbers Package: Tools to Deal with Fuzzy Numbers in R. R package version 0.4-1, 2015. https://cran.r-project.org/web/packages=FuzzyNumbers

Klir, G.J., Yuan, B., Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall PTR, New Jersey (1995).

Viertl, R., Statistical methods for fuzzy data. New York: John Wiley & Sons (2011)

Zadeh, L.A., Fuzzy sets. Information and Control 8, 338-359 (1965)

Zadeh, L.A., Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications 23, 421-427 (1968)

See Also

See PiecewiseLinearFuzzyNumber, as.PiecewiseLinearFuzzyNumber and piecewiseLinearApproximation from package FuzzyNumbers.

Examples


library(FuzzyNumbers)   # For Loud 'FuzzyNumbers' package, after its instalation

# Example 1: Four different cases of function (in respect to increasing/decreasing on x and y)
x = TriangularFuzzyNumber(1,2,5)
y = TrapezoidalFuzzyNumber(3,4,5,6)

g1 = function(x,y) 2*x+y
f2apply(x, y, g1, knot.n=5, type="l", I.O.plot=TRUE)
f2apply(x, y, g1, knot.n=10, xlim=c(0,18), col=4, type="b", I.O.plot=FALSE)
plot(2*x+y, col=2, lty=4, lwd=3, add=TRUE) #Compare the result from "FuzzyNumbers" package

g2 = function(x,y) -2*pnorm(x)+y
f2apply(x, y, g2, type="b")

g3 = function(x,y) 2*x-punif(y, min=1, max=8)
f2apply(x, y, g3, type="l")

g4 = function(x,y) -2*x-y^3
f2apply(x, y, g4, knot.n=20, type="b" )



# Example 2: 
knot.n = 10
A <- FuzzyNumber(-1, .5, 1, 3,
  lower=function(alpha) qbeta(alpha,0.4,3),
  upper=function(alpha) (1-alpha)^4
)
B = PowerFuzzyNumber(1,2,2.5,4, p.left=2, p.right=0.5)
f2apply(A, B, function(x,y) -2*x-y^3, knot.n=knot.n, type="l", col=2, lty=5, lwd=3, I.O.plot=FALSE)
f2apply(A, B, function(x,y) -2*x-y^3, knot.n=knot.n, type="l", col=2, lty=5, lwd=3)

# As another example, change the function and work with the cuts of result:
Result <- f2apply(A, B, function(x,y) abs(y+x-10),knot.n=knot.n,type="l",I.O.plot=TRUE,col=3,lwd=2)
Result
class(Result)

#The result of alphacut for alpha=0.444:
Result$cuts["0.444",] #Or equivalently,  
Result$cuts[6,]  

# Upper bounds of alphacuts:
Result$cuts[,"U"] #Or equivalently,  
Result$cuts[,2]

#The core of the result:
Result$core  

# The support of the result:
Result$support # Or, equivalently:  Result$s


# Example 3: 
knot.n = 10
x = PowerFuzzyNumber(0,1,1,1.3, p.left=1, p.right=1) 
y = PowerFuzzyNumber(3,4,4,6, p.left=1, p.right=1) 
f = function(x,y) 3*x - 2*y
f2apply(x, y, f, knot.n=knot.n, type="l", I.O.plot=TRUE)

g = function(x,y) exp(x^2) + 3*log(sqrt(y+4))
f2apply(x, y, g, knot.n=knot.n, type="l", I.O.plot=TRUE)


# Example 4: 
knot.n = 20
A = PowerFuzzyNumber(.1,.5,.5,.6, p.left=2, p.right=0.5)
B <- FuzzyNumber(.5, .6, .7, .9,
  lower=function(alpha) qbeta(alpha,0.4,3),
  upper=function(alpha) (1-alpha)^4
)
fun1 <- function(x,y) qnorm(x)-qgamma(y,2,4)
f2apply(A, B, fun1, knot.n=knot.n, type="l", I.O.plot=TRUE, col=2, lwd=2)

fun2 <- function(x,y) 0.3*sin(qnorm(x))+tan(qgamma(y,2,4))
f2apply(A, B, fun2, knot.n=knot.n, type="l", I.O.plot=TRUE)


# Example 5: It may be one of considered inputs are crisp.
knot.n = 10
A = 27
B = PowerFuzzyNumber(1,2,2.5,4, p.left=2, p.right=0.5)
f2apply(A, B, function(x,y) -2*x-y^3, knot.n=knot.n, I.O.plot=TRUE)

f2apply(x=4, y=3, function(x,y) sqrt(x)*y^2, knot.n=knot.n, I.O.plot=TRUE)
f2apply(x=4, y=TriangularFuzzyNumber(2,3,5), function(x,y) sqrt(x)-y^2,knot.n=knot.n,I.O.plot=TRUE)
f2apply(x=TriangularFuzzyNumber(2,4,6), y=3, function(x,y) sqrt(x)-y^2,knot.n=knot.n,I.O.plot=TRUE)
f2apply(x=TriangularFuzzyNumber(2,4,6), y=TriangularFuzzyNumber(2,3,5), function(x,y) sqrt(x)-y^2,
        knot.n=knot.n, I.O.plot=TRUE)


## The function is currently defined as
function (x, y, fun, knot.n = 10, I.O.plot = "TRUE", ...) 
{
    x.input <- x
    y.input <- y
    if (class(x) == "numeric") {
        x <- x.input.fuzzy <- TriangularFuzzyNumber(x, x, x)
    }
    if (class(x) == "TriangularFuzzyNumber" | class(x) == "TrapezoidalFuzzyNumber") {
        x.input.fuzzy <- x
        x <- as.PiecewiseLinearFuzzyNumber(x, knot.n)
    }
    if (class(x) == "FuzzyNumber" | class(x) == "PowerFuzzyNumber" |
        class(x) == "PiecewiseLinearFuzzyNumber"  ){
        x.input.fuzzy <- x
        x <- piecewiseLinearApproximation(x, method = "Naive")
    }
    if (class(y) == "numeric") {
        y <- y.input.fuzzy <- TriangularFuzzyNumber(y, y, y)
    }
    if (class(y) == "TriangularFuzzyNumber" | class(y) == "TrapezoidalFuzzyNumber") {
        y.input.fuzzy <- y
        y <- as.PiecewiseLinearFuzzyNumber(y, knot.n)
    }
    if (class(y) == "FuzzyNumber" | class(y) == "PowerFuzzyNumber" | 
        class(y) == "PiecewiseLinearFuzzyNumber"  ){
        y.input.fuzzy <- y
        y <- piecewiseLinearApproximation(y, method = "Naive")
    }
    step.x = length(supp(x))/30
    step.y = length(supp(y))/30
    if (class(x.input) == "numeric") {
        is.inc.on.x <- TRUE
        is.dec.on.x <- FALSE
    }
    else {
        is.inc.on.x = is.increasing.on.x(fun, x.bound = supp(x), 
            y.bound = supp(y), step.x)
        is.dec.on.x = is.decreasing.on.x(fun, x.bound = supp(x), 
            y.bound = supp(y), step.x)
    }
    if (class(y.input) == "numeric") {
        is.inc.on.y <- TRUE
        is.dec.on.y <- FALSE
    }
    else {
        is.inc.on.y = is.increasing.on.y(fun, x.bound = supp(x), 
            y.bound = supp(y), step.y)
        is.dec.on.y = is.decreasing.on.y(fun, x.bound = supp(x), 
            y.bound = supp(y), step.y)
    }
    if ((is.inc.on.x == TRUE) & (is.inc.on.y == TRUE)) {
        fun.rep = "fun is an increasing function from x and y on introduced bounds"
        L.result = fun(alphacut(x.input.fuzzy, seq(0, 1, len = knot.n))[, 
            "L"], alphacut(y.input.fuzzy, seq(0, 1, len = knot.n))[, 
            "L"])
        U.result = fun(alphacut(x.input.fuzzy, seq(0, 1, len = knot.n))[, 
            "U"], alphacut(y.input.fuzzy, seq(0, 1, len = knot.n))[, 
            "U"])
        result = c(L.result, U.result[length(U.result):1])
    }
    else {
        if ((is.dec.on.x == TRUE) & (is.inc.on.y == TRUE)) {
    fun.rep = "fun is a decreasing function on x and increasing function on y on introduced bounds"
            L.result = fun(alphacut(x.input.fuzzy, seq(0, 1, 
                len = knot.n))[, "U"], alphacut(y.input.fuzzy, 
                seq(0, 1, len = knot.n))[, "L"])
            U.result = fun(alphacut(x.input.fuzzy, seq(0, 1, 
                len = knot.n))[, "L"], alphacut(y.input.fuzzy, 
                seq(0, 1, len = knot.n))[, "U"])
            result = c(L.result, U.result[length(U.result):1])
        }
        else {
            if ((is.inc.on.x == TRUE) & (is.dec.on.y == TRUE)) {
   fun.rep = "fun is an increasing function on x and decreasing function on y on introduced bounds"
                L.result = fun(alphacut(x.input.fuzzy, seq(0, 
                  1, len = knot.n))[, "L"], alphacut(y.input.fuzzy, 
                  seq(0, 1, len = knot.n))[, "U"])
                U.result = fun(alphacut(x.input.fuzzy, seq(0, 
                  1, len = knot.n))[, "U"], alphacut(y.input.fuzzy, 
                  seq(0, 1, len = knot.n))[, "L"])
                result = c(L.result, U.result[length(U.result):1])
            }
            else {
                if ((is.dec.on.x == TRUE) & (is.dec.on.y == TRUE)) {
                  fun.rep = "fun is a decreasing function from x and y on introduced bounds"
                  L.result = fun(alphacut(x.input.fuzzy, seq(0, 
                    1, len = knot.n))[, "U"], alphacut(y.input.fuzzy, 
                    seq(0, 1, len = knot.n))[, "U"])
                  U.result = fun(alphacut(x.input.fuzzy, seq(0, 
                    1, len = knot.n))[, "L"], alphacut(y.input.fuzzy, 
                    seq(0, 1, len = knot.n))[, "L"])
                  result = c(L.result, U.result[length(U.result):1])
                }
                else {
                  return(print("fun is not a monoton function on x and y for the introduced bounds.
                                Therefore this function is not appliable for computation."))
                }
            }
        }
    }
    if (class(x.input) == "numeric" | class(y.input) == "numeric") {
        fun.rep = "supports of one/both inputted points are crisp and the exact report on function
                   is not needed"
    }
    Alphacuts = c(seq(0, 1, len = knot.n), seq(1, 0, len = knot.n))
    if (I.O.plot == TRUE) {
        op <- par(mfrow = c(3, 1))
        if (class(x.input) == "numeric") {
            plot(TriangularFuzzyNumber(x.input, x.input, x.input), 
                ylab = "membership func. of x")
        }
        else {
            plot(x.input, ylab = "membership func. of x")
        }
        if (class(y.input) == "numeric") {
            plot(TriangularFuzzyNumber(y.input, y.input, y.input), 
                xlab = "y", ylab = "membership func. of y")
        }
        else {
            plot(y.input, col = 1, xlab = "y", ylab = "membership func. of y")
        }
        plot(result, Alphacuts, xlab = "fun(x,y)", ylab = "membership func. of fun(x,y)", 
            ...)
        abline(v = fun(core(x), core(y)), lty = 3)
        par(op)
    }
    if (I.O.plot == "FALSE") {
        plot(result, Alphacuts, xlab = "fun(x,y)", ylab = "membership func. of fun(x,y)", 
            ...)
    }
    result2 <- c(L.result[length(L.result):1], U.result[length(U.result):1])
    cuts <- matrix(result2, ncol = 2, byrow = FALSE, dimnames = list(round((length(L.result) - 
        1):0/(length(L.result) - 1), 3), c("L", "U")))
    return(list(fun.rep = noquote(fun.rep), cuts = cuts, core = cuts[1, 
        ], support = cuts[dim(cuts)[1], ]))
  }

[Package FuzzyNumbers.Ext.2 version 3.2 Index]