PoiNBFuzzyParam {FuzzyClass} | R Documentation |
Fuzzy Poisson Naive Bayes Classifier with Fuzzy parameters
Description
PoiNBFuzzyParam
Fuzzy Poisson Naive Bayes Classifier with Fuzzy parameters
Usage
PoiNBFuzzyParam(train, cl, alphacut = 1e-04, metd = 2, cores = 2)
Arguments
train |
matrix or data frame of training set cases. |
cl |
factor of true classifications of training set |
alphacut |
value of the alpha-cut parameter, this value is between 0 and 1. |
metd |
Method of transforming the triangle into scalar, It is the type of data entry for the test sample, use metd 1 if you want to use the Yager technique, metd 2 if you want to use the Q technique of the uniformity test (article: Directional Statistics and Shape analysis), and metd 3 if you want to use the Thorani technique |
cores |
how many cores of the computer do you want to use to use for prediction (default = 2) |
Value
A vector of classifications
References
Soares E, Machado L, Moraes R (2016). “Assessment of poisson naive bayes classifier with fuzzy parameters using data from different statistical distributions.” In IV Bazilian Congress on Fuzzy Sistems (CBSF 2016), volume 1, 57–68.
Examples
set.seed(1) # determining a seed
class1 <- data.frame(vari1 = rpois(100,lambda = 2),
vari2 = rpois(100,lambda = 2),
vari3 = rpois(100,lambda = 2), class = 1)
class2 <- data.frame(vari1 = rpois(100,lambda = 1),
vari2 = rpois(100,lambda = 1),
vari3 = rpois(100,lambda = 1), class = 2)
class3 <- data.frame(vari1 = rpois(100,lambda = 5),
vari2 = rpois(100,lambda = 5),
vari3 = rpois(100,lambda = 5), class = 3)
data <- rbind(class1,class2,class3)
# Splitting into Training and Testing
split <- caTools::sample.split(t(data[, 1]), SplitRatio = 0.7)
Train <- subset(data, split == "TRUE")
Test <- subset(data, split == "FALSE")
# ----------------
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -4]
fit_FPoiNB <- PoiNBFuzzyParam(
train = Train[, -4],
cl = Train[, 4], metd = 1, cores = 2
)
pred_FPoiNB <- predict(fit_FPoiNB, test)
head(pred_FPoiNB)
head(Test[, 4])