FuzzyTrapezoidalNaiveBayes {FuzzyClass} | R Documentation |
Fuzzy Naive Bayes Trapezoidal Classifier
Description
FuzzyTrapezoidalNaiveBayes
Fuzzy Naive Bayes Trapezoidal Classifier
Usage
FuzzyTrapezoidalNaiveBayes(train, cl, cores = 2, fuzzy = T)
Arguments
train |
matrix or data frame of training set cases. |
cl |
factor of true classifications of training set |
cores |
how many cores of the computer do you want to use to use for prediction (default = 2) |
fuzzy |
boolean variable to use the membership function |
Value
A vector of classifications
References
Lopes A, Ferreira J, Machado LS, Moraes RM (2022). “A New Fuzzy Trapezoidal Naive Bayes Network as basis for Assessment in Training based on Virtual Reality.” In The 15th International FLINS Conference on Machine learning, Multi agent and Cyber physical systems (FLINS 2022). Nankai University.
Examples
set.seed(1) # determining a seed
data(iris)
# Splitting into Training and Testing
split <- caTools::sample.split(t(iris[, 1]), SplitRatio = 0.7)
Train <- subset(iris, split == "TRUE")
Test <- subset(iris, split == "FALSE")
# ----------------
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -5]
fit_NBT <- FuzzyTrapezoidalNaiveBayes(
train = Train[, -5],
cl = Train[, 5], cores = 2
)
pred_NBT <- predict(fit_NBT, test)
head(pred_NBT)
head(Test[, 5])
[Package FuzzyClass version 0.1.6 Index]