FuzzyPoissonNaiveBayes {FuzzyClass} | R Documentation |
Fuzzy Poisson Naive Bayes
Description
FuzzyPoissonNaiveBayes
Fuzzy Poisson Naive Bayes
Usage
FuzzyPoissonNaiveBayes(train, cl, cores = 2, fuzzy = TRUE)
Arguments
train |
matrix or data frame of training set cases. |
cl |
factor of true classifications of training set |
cores |
how many cores of the computer do you want to use to use for prediction (default = 2) |
fuzzy |
boolean variable to use the membership function |
Value
A vector of classifications
References
Moraes RM, Machado LS (2015). “A fuzzy poisson naive bayes classifier for epidemiological purposes.” In 2015 7th International Joint Conference on Computational Intelligence (IJCCI), volume 2, 193–198. IEEE.
Examples
set.seed(1) # determining a seed
class1 <- data.frame(vari1 = rpois(100,lambda = 2),
vari2 = rpois(100,lambda = 2),
vari3 = rpois(100,lambda = 2), class = 1)
class2 <- data.frame(vari1 = rpois(100,lambda = 1),
vari2 = rpois(100,lambda = 1),
vari3 = rpois(100,lambda = 1), class = 2)
class3 <- data.frame(vari1 = rpois(100,lambda = 5),
vari2 = rpois(100,lambda = 5),
vari3 = rpois(100,lambda = 5), class = 3)
data <- rbind(class1,class2,class3)
# Splitting into Training and Testing
split <- caTools::sample.split(t(data[, 1]), SplitRatio = 0.7)
Train <- subset(data, split == "TRUE")
Test <- subset(data, split == "FALSE")
# ----------------
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -4]
fit_NBT <- FuzzyPoissonNaiveBayes(
train = Train[, -4],
cl = Train[, 4], cores = 2
)
pred_NBT <- predict(fit_NBT, test)
head(pred_NBT)
head(Test[, 4])
[Package FuzzyClass version 0.1.6 Index]