fnn.predict {FuncNN} | R Documentation |
Prediction using Functional Neural Networks
Description
The prediction function associated with the fnn model allowing for users to quickly get scalar or functional outputs.
Usage
fnn.predict(
model,
func_cov,
scalar_cov = NULL,
basis_choice = c("fourier"),
num_basis = c(7),
domain_range = list(c(0, 1)),
covariate_scaling = TRUE,
raw_data = FALSE
)
Arguments
model |
A keras model as outputted by |
func_cov |
The form of this depends on whether the |
scalar_cov |
A matrix contained the multivariate information associated with the data set. This is all of your
non-longitudinal data. Must be the same covariates as input into
|
basis_choice |
A vector of size k (the number of functional covariates) with either "fourier" or "bspline" as the inputs.
This is the choice for the basis functions used for the functional weight expansion. If you only specify one, with k > 1,
then the argument will repeat that choice for all k functional covariates. Should be the same choices as input into
|
num_basis |
A vector of size k defining the number of basis functions to be used in the basis expansion. Must be odd
for |
domain_range |
List of size k. Each element of the list is a 2-dimensional vector containing the upper and lower
bounds of the k-th functional weight. Must be the same covariates as input into |
covariate_scaling |
If TRUE, then data will be internally scaled before model development. |
raw_data |
If TRUE, then user does not need to create functional observations beforehand. The function will internally take care of that pre-processing. |
Details
No additional details for now.
Value
The following is returned:
Predictions
– A vector of scalar predictions or a matrix of basis coefficients for functional responses.
Examples
# First, we do an example with a scalar response:
# loading data
tecator = FuncNN::tecator
# libraries
library(fda)
# define the time points on which the functional predictor is observed.
timepts = tecator$absorp.fdata$argvals
# define the fourier basis
nbasis = 29
spline_basis = create.fourier.basis(tecator$absorp.fdata$rangeval, nbasis)
# convert the functional predictor into a fda object and getting deriv
tecator_fd = Data2fd(timepts, t(tecator$absorp.fdata$data), spline_basis)
tecator_deriv = deriv.fd(tecator_fd)
tecator_deriv2 = deriv.fd(tecator_deriv)
# Non functional covariate
tecator_scalar = data.frame(water = tecator$y$Water)
# Response
tecator_resp = tecator$y$Fat
# Getting data into right format
tecator_data = array(dim = c(nbasis, length(tecator_resp), 3))
tecator_data[,,1] = tecator_fd$coefs
tecator_data[,,2] = tecator_deriv$coefs
tecator_data[,,3] = tecator_deriv2$coefs
# Splitting into test and train for third FNN
ind = 1:165
tec_data_train <- array(dim = c(nbasis, length(ind), 3))
tec_data_test <- array(dim = c(nbasis, nrow(tecator$absorp.fdata$data) - length(ind), 3))
tec_data_train = tecator_data[, ind, ]
tec_data_test = tecator_data[, -ind, ]
tecResp_train = tecator_resp[ind]
tecResp_test = tecator_resp[-ind]
scalar_train = data.frame(tecator_scalar[ind,1])
scalar_test = data.frame(tecator_scalar[-ind,1])
# Setting up network
tecator_fnn = fnn.fit(resp = tecResp_train,
func_cov = tec_data_train,
scalar_cov = scalar_train,
basis_choice = c("fourier", "fourier", "fourier"),
num_basis = c(5, 5, 7),
hidden_layers = 4,
neurons_per_layer = c(64, 64, 64, 64),
activations_in_layers = c("relu", "relu", "relu", "linear"),
domain_range = list(c(850, 1050), c(850, 1050), c(850, 1050)),
epochs = 300,
learn_rate = 0.002)
# Predicting
pred_tec = fnn.predict(tecator_fnn,
tec_data_test,
scalar_cov = scalar_test,
basis_choice = c("fourier", "fourier", "fourier"),
num_basis = c(5, 5, 7),
domain_range = list(c(850, 1050), c(850, 1050), c(850, 1050)))
# Now an example with functional responses
# libraries
library(fda)
# Loading data
data("daily")
# Creating functional data
temp_data = array(dim = c(65, 35, 1))
tempbasis65 = create.fourier.basis(c(0,365), 65)
tempbasis7 = create.bspline.basis(c(0,365), 7, norder = 4)
timepts = seq(1, 365, 1)
temp_fd = Data2fd(timepts, daily$tempav, tempbasis65)
prec_fd = Data2fd(timepts, daily$precav, tempbasis7)
prec_fd$coefs = scale(prec_fd$coefs)
# Data set up
temp_data[,,1] = temp_fd$coefs
resp_mat = prec_fd$coefs
# Non functional covariate
weather_scalar = data.frame(total_prec = apply(daily$precav, 2, sum))
# Splitting into test and train
ind = 1:30
nbasis = 65
weather_data_train <- array(dim = c(nbasis, length(ind), 1))
weather_data_test <- array(dim = c(nbasis, ncol(daily$tempav) - length(ind), 1))
weather_data_train[,,1] = temp_data[, ind, ]
weather_data_test[,,1] = temp_data[, -ind, ]
scalar_train = data.frame(weather_scalar[ind,1])
scalar_test = data.frame(weather_scalar[-ind,1])
resp_train = t(resp_mat[,ind])
resp_test = t(resp_mat[,-ind])
# Running model
weather_func_fnn <- fnn.fit(resp = resp_train,
func_cov = weather_data_train,
scalar_cov = scalar_train,
basis_choice = c("bspline"),
num_basis = c(7),
hidden_layers = 2,
neurons_per_layer = c(1024, 1024),
activations_in_layers = c("sigmoid", "linear"),
domain_range = list(c(1, 365)),
epochs = 300,
learn_rate = 0.01,
func_resp_method = 1)
# Getting Predictions
predictions = fnn.predict(weather_func_fnn,
weather_data_test,
scalar_cov = scalar_test,
basis_choice = c("bspline"),
num_basis = c(7),
domain_range = list(c(1, 365)))
# Looking at predictions
predictions
# Classification Prediction
# Loading data
tecator = FuncNN::tecator
# Making classification bins
tecator_resp = as.factor(ifelse(tecator$y$Fat > 25, 1, 0))
# Non functional covariate
tecator_scalar = data.frame(water = tecator$y$Water)
# Splitting data
ind = sample(1:length(tecator_resp), round(0.75*length(tecator_resp)))
train_y = tecator_resp[ind]
test_y = tecator_resp[-ind]
train_x = tecator$absorp.fdata$data[ind,]
test_x = tecator$absorp.fdata$data[-ind,]
scalar_train = data.frame(tecator_scalar[ind,1])
scalar_test = data.frame(tecator_scalar[-ind,1])
# Making list element to pass in
func_covs_train = list(train_x)
func_covs_test = list(test_x)
# Now running model
fit_class = fnn.fit(resp = train_y,
func_cov = func_covs_train,
scalar_cov = scalar_train,
hidden_layers = 6,
neurons_per_layer = c(24, 24, 24, 24, 24, 58),
activations_in_layers = c("relu", "relu", "relu", "relu", "relu", "linear"),
domain_range = list(c(850, 1050)),
learn_rate = 0.001,
epochs = 100,
raw_data = TRUE,
early_stopping = TRUE)
# Running prediction
predict_class = fnn.predict(fit_class,
func_cov = func_covs_test,
scalar_cov = scalar_test,
domain_range = list(c(850, 1050)),
raw_data = TRUE)
# Rounding predictions (they are probabilities)
rounded_preds = ifelse(round(predict_class)[,2] == 1, 1, 0)
# Confusion matrix
# caret::confusionMatrix(as.factor(rounded_preds), as.factor(test_y))