beta_div_contrib {FuncDiv}R Documentation

Main function for computing contributional beta diversity

Description

Based on joint taxa-function input data (i.e., contributional data), the beta diversity (i.e., inter-sample distance or divergence) will be computed for the subset of taxa encoding each individual function separately. A large List object containing all these tables can be returned, or alternatively these tables will be written to the disk as plain-text files.

Usage

beta_div_contrib(
  metrics = NULL,
  func_tab = NULL,
  abun_tab = NULL,
  contrib_tab = NULL,
  in_tree = NULL,
  func_ids = NULL,
  return_objects = FALSE,
  write_outfiles = FALSE,
  outdir = NULL,
  ncores = 1,
  samp_colname = "sample",
  func_colname = "function.",
  taxon_colname = "taxon",
  abun_colname = "taxon_abun"
)

Arguments

metrics

beta diversity metrics to compute. Must be default metric computed by parallelDist::parDist or one of "weighted_unifrac", "unweighted_unifrac", or "jensen_shannon_div".

func_tab

data.frame object containing function copy numbers, with rows as functions and columns as taxa. Required if abun_tab is specified, and is mutually exclusive with contrib_tab.

abun_tab

data.frame object containing taxonomic abundances across samples, with rows as taxa and columns as samples. Required if func_tab is specified, and is mutually exclusive with contrib_tab.

contrib_tab

data.frame object containing combined taxa abundances and function copy numbers across taxa. Must contain columns corresponding to the sample ids, function ids, taxa ids, and taxa abundances within samples. These column names are specified by the samp_colname, func_colname, taxon_colname, and abun_colname, respectively.Mutually exclusive with abun_tab and func_tab.

in_tree

phylo object to use if weighted_unifrac or unweighted_unifrac are specified.

func_ids

character vector specifying subset of function ids to include for analysis. Will analyze all functions present if this is not specified.

return_objects

Boolean vector of length one, specifying whether function should return a list of all output distance tables (nested by metric name, and then by function id). Incompatible with write_outfiles.

write_outfiles

Boolean vector of length one, specifying whether function write all distance tables to plain-text files in the specified outdir location. Incompatible with return_objects.

outdir

character vector of length one, indicating where to save output files if write_outfiles = TRUE.

ncores

integer indicating number of cores to use for parallelizable steps.

samp_colname

sample id column name of contrib_tab input data.frame.

func_colname

function id column name of contrib_tab input data.frame.

taxon_colname

taxon id column name of contrib_tab input data.frame.

abun_colname

taxonomic abundance (within each sample) column name of contrib_tab input data.frame.

Details

Input data can be either a separate function copy number and taxonomic abundance table, or a joint contributional table. Metrics must be one of "weighted_unifrac", "unweighted_unifrac", "jensen_shannon_div", or a default metric available through the parallelDist::parDist function. See ?parallelDist::parDist for a description of all default metrics.

The taxonomic abundances will be converted to relative abundances prior to computing inter-sample distances.

Value

differs depending on the return_objects and write_outfiles parameters.

If return_objects = TRUE, then a nested List will be returned. Each specific beta diversity metric will be the first level, and the functions are the second level (e.g., contrib_beta$binary$func2).

If write_outfiles then a character vector will be returned, indicating where the output tables were written.

Examples

# First, simulate some (non-realistic) data.
set.seed(123)
test_tree <- ape::rtree(100)
test_abun <- data.frame(matrix(rnorm(500), nrow = 100, ncol = 5))
rownames(test_abun) <- test_tree$tip.label
colnames(test_abun) <- c("sample1", "sample2", "sample3", "sample4", "sample5")
test_abun[test_abun < 0] <- 0
test_func <- data.frame(matrix(sample(c(0L, 1L), 200, replace = TRUE),
                               nrow = 2, ncol = 100))
colnames(test_func) <- test_tree$tip.label
rownames(test_func) <- c("func1", "func2")

# Compute beta diversity, based on Weighted UniFrac and Jaccard distances
# (i.e., "binary").
contrib_beta <- beta_div_contrib(metrics = c("weighted_unifrac", "binary"),
                                 func_tab = test_func,
                                 abun_tab = test_abun,
                                 in_tree = test_tree,
                                 return_objects = TRUE,
                                 ncores = 1)

# Parse beta diversity distance list value for a specific function (func2) and
# distance metric (Jaccard).
contrib_beta$binary$func2


[Package FuncDiv version 1.0.0 Index]