find_best_delta {FunCC} | R Documentation |
Functional Cheng and Church Algorithm varying the delta value
Description
The find_best_delta function evaluate the results of FunCC algorithm in terms of total H-score value, the number of obtained bi-clusters and the number of not assigned elements when varying the delta value
Usage
find_best_delta(
fun_mat,
delta_min,
delta_max,
num_delta = 10,
template.type = "mean",
theta = 1.5,
number = 100,
alpha = 0,
beta = 0,
const_alpha = FALSE,
const_beta = FALSE,
shift.alignement = FALSE,
shift.max = 0.1,
max.iter.align = 100
)
Arguments
fun_mat |
The data array (n x m x T) where each entry corresponds to the measure of one observation i, i=1,...,n, for a functional variable m, m=1,...,p, at point t, t=1,...,T |
delta_min |
scalar: Manimum value of the maximum of accepted score, should be a real value > 0 |
delta_max |
scalar: Maximum value of the maximum of accepted score, should be a real value > 0 |
num_delta |
integer: number of delta to be evaluated between delta_min and delta_max |
template.type |
character: type of template required. If template.type='mean' the template is evaluated as the average function, if template.type='medoid' the template is evaluated as the medoid function. |
theta |
scalar: Scaling factor should be a real value > 1 |
number |
integer: Maximum number of iterations |
alpha |
binary: if alpha=1 row shift is allowed, if alpha=0 row shift is avoided |
beta |
binary: if beta=1 row shift is allowed, if beta=0 row shift is avoided |
const_alpha |
logicol: indicates if row shift is contrained as constant |
const_beta |
logicol: indicates if col shift is contrained as constant |
shift.alignement |
logicol: If shift.alignement=True the shift aligment is performed, if shift.alignement=False no alignment is performed |
shift.max |
scalar: shift.max controls the maximal allowed shift, at each iteration, in the alignment procedure with respect to the range of curve domains. t.max must be such that 0<shift.max<1 |
max.iter.align |
integer: maximum number of iteration in the alignment procedure |
Value
a dataframe containing for each evaluated delta: Htot_sum (the sum of totale H-score), num_clust (the number of found Bi-clusters), not_assigned (the number of not assigned elements)
Examples
## Not run:
data("funCCdata")
find_best_delta(funCCdata,delta_min=0.1,delta_max=20,num_delta=20,alpha=1,beta=0,const_alpha=TRUE)
## End(Not run)