MdsDiss {FreeSortR} | R Documentation |
Mds of a dissimilarity matrix
Description
Computes the multidimensional scaling of a matrix of dissimilarities between stimuli. Mds is based on smacof algorithm. The Mds configuration is rotated in order to get orthogonal dimensions sorted by decreasing variance.
Usage
MdsDiss(MatDissimil, ndim = 2, metric = TRUE, ties = "primary",
itmax = 5000, eps = 1e-06)
Arguments
MatDissimil |
A matrix of dissimilarities |
ndim |
Dimension of the Mds |
metric |
Metric or not metric Mds |
ties |
Treatment of ties in case of non metric Mds |
itmax |
Maximum number of iterations |
eps |
Epsilon for Mds computation |
Value
List of the following components :
Config |
Mds configuration of the stimuli |
Percent |
Percentage of inertia of the dimensions of Mds |
Stress |
Stress of the Mds solution |
Examples
data(AromaSort)
Aroma<-SortingPartition(AromaSort)
ListDissimil<-Dissimil(Aroma)
MatDissim<-apply(simplify2array(ListDissimil),c(1,2),'sum')
Mdsres<-MdsDiss(MatDissim)
[Package FreeSortR version 1.3 Index]