MLSW {Frames2} | R Documentation |
Multinomial logistic estimator under single frame approach with auxiliary information from the whole population
Description
Produces estimates for class totals and proportions using multinomial logistic regression from survey data obtained from a dual frame sampling design with the same set of auxiliary variables for the whole population. Confidence intervals are also computed, if required.
Usage
MLSW (ysA, ysB, pik_A, pik_B, pik_ab_B, pik_ba_A, domains_A, domains_B, xsA, xsB,
x, ind_sam, conf_level = NULL)
Arguments
ysA |
A data frame containing information about one or more factors, each one of dimension |
ysB |
A data frame containing information about one or more factors, each one of dimension |
pik_A |
A numeric vector of length |
pik_B |
A numeric vector of length |
pik_ab_B |
A numeric vector of size |
pik_ba_A |
A numeric vector of size |
domains_A |
A character vector of size |
domains_B |
A character vector of size |
xsA |
A numeric vector of length |
xsB |
A numeric vector of length |
x |
A numeric vector or length |
ind_sam |
A numeric vector of length |
conf_level |
(Optional) A numeric value indicating the confidence level for the confidence intervals, if desired. |
Details
Multinomial logistic estimator in single frame using auxiliary information from the whole population for a proportion is given by
\hat{P}_{MLi}^{SW} = \frac{1}{N} \left(\sum_{k \in U} \tilde{p}_{ki} + \sum_{k \in s} \tilde{d}_k (z_{ki} - \tilde{p}_{ki})\right) \hspace{0.3cm} i = 1,...,m
with m
the number of categories of the response variable, z_i
the indicator variable for the i-th category of the response variable,
\tilde{d}_k =\left\{\begin{array}{lcc}
d_k^A & \textrm{if } k \in a\\
(1/d_k^A + 1/d_k^B)^{-1} & \textrm{if } k \in ab \cup ba \\
d_k^B & \textrm{if } k \in b
\end{array}
\right.
and
\tilde{p}_{ki} = \frac{exp(x_k^{'}\tilde{\beta_i})}{\sum_{r=1}^m exp(x_k^{'}\tilde{\beta_r})},
being \tilde{\beta_i}
the maximum likelihood parameters of the multinomial logistic model considering weights \tilde{d}
.
Value
PMLSW
returns an object of class "MultEstimatorDF" which is a list with, at least, the following components:
Call |
the matched call. |
Est |
class frequencies and proportions estimations for main variable(s). |
References
Molina, D., Rueda, M., Arcos, A. and Ranalli, M. G. (2015) Multinomial logistic estimation in dual frame surveys Statistics and Operations Research Transactions (SORT). To be printed.
Lehtonen, R. and Veijanen, A. (1998) On multinomial logistic generalizaed regression estimators Technical report 22, Department of Statistics, University of Jyvaskyla.
See Also
Examples
data(DatMA)
data(DatMB)
data(DatPopM)
IndSample <- c(DatMA$Id_Pop, DatMB$Id_Pop)
#Let calculate proportions of categories of variable Prog using MLSW estimator
#using Read as auxiliary variable
MLSW(DatMA$Prog, DatMB$Prog, DatMA$ProbA, DatMB$ProbB, DatMA$ProbB, DatMB$ProbA,
DatMA$Domain, DatMB$Domain, DatMA$Read, DatMB$Read, DatPopM$Read, IndSample)
#Let obtain 95% confidence intervals together with the estimations
MLSW(DatMA$Prog, DatMB$Prog, DatMA$ProbA, DatMB$ProbB, DatMA$ProbB, DatMB$ProbA,
DatMA$Domain, DatMB$Domain, DatMA$Read, DatMB$Read, DatPopM$Read, IndSample,
conf_level = 0.95)