MLDF {Frames2} | R Documentation |
Multinomial logistic estimator under dual frame approach with auxiliary information from each frame
Description
Produces estimates for class totals and proportions using multinomial logistic regression from survey data obtained from a dual frame sampling design using a model assisted approach with a possibly different set of auxiliary variables for each frame. Confidence intervals are also computed, if required.
Usage
MLDF (ysA, ysB, pik_A, pik_B, domains_A, domains_B, xsA, xsB, xA, xB, ind_samA,
ind_samB, ind_domA, ind_domB, N, conf_level = NULL)
Arguments
ysA |
A data frame containing information about one or more factors, each one of dimension |
ysB |
A data frame containing information about one or more factors, each one of dimension |
pik_A |
A numeric vector of length |
pik_B |
A numeric vector of length |
domains_A |
A character vector of size |
domains_B |
A character vector of size |
xsA |
A numeric vector of length |
xsB |
A numeric vector of length |
xA |
A numeric vector or length |
xB |
A numeric vector or length |
ind_samA |
A numeric vector of length |
ind_samB |
A numeric vector of length |
ind_domA |
A character vector of length |
ind_domB |
A character vector of length |
N |
A numeric value indicating the size of the population. |
conf_level |
(Optional) A numeric value indicating the confidence level for the confidence intervals, if desired. |
Details
Multinomial logistic estimator in dual frame using auxiliary information from each frame for a proportion is given by
\hat{P}_{MLi}^{DF} = \frac{1}{N} \left(\sum_{k \in U_a} p_{ki}^A + \eta \sum_{k \in U_{ab}} p_{ki}^A + (1 - \eta) \sum_{k \in U_{ba}} p_{ki}^B + \sum_{k \in U_b} p_{ki}^B \right.
+ \sum_{k \in s_a} d_k^A (z_{ki} - p_{ki}^A) + \eta \sum_{k \in s_{ab}} d_k^A (z_{ki} - p_{ki}^A)
\left. + (1 - \eta) \sum_{k \in s_{ba}} d_k^B (z_{ki} - p_{ki}^B) + \sum_{k \in s_b} d_k^B (z_{ki} - p_{ki}^B)\right), \hspace{0.3cm} i = 1,...,m
with \eta \in (0,1)
, m
the number of categories of the response variable, z_i
the indicator variable for the i-th category of the response variable,
d^A
and d^B
the design weights for each frame, defined as the inverse of the first order inclusion probabilities and
p_{ki}^A = \frac{exp(x_k^{'}\beta_i^A)}{\sum_{r=1}^m exp(x_k^{'}\beta_r^A)},
being \beta_i^A
the maximum likelihood parameters of the multinomial logistic model considering weights d^A
. p_{ki}^B
can be defined similarly.
Value
MLDF
returns an object of class "MultEstimatorDF" which is a list with, at least, the following components:
Call |
the matched call. |
Est |
class frequencies and proportions estimations for main variable(s). |
References
Molina, D., Rueda, M., Arcos, A. and Ranalli, M. G. (2015) Multinomial logistic estimation in dual frame surveys Statistics and Operations Research Transactions (SORT). To be printed.
Lehtonen, R. and Veijanen, A. (1998) On multinomial logistic generalizaed regression estimators Technical report 22, Department of Statistics, University of Jyvaskyla.
See Also
Examples
data(DatMA)
data(DatMB)
data(DatPopM)
N <- nrow(DatPopM)
levels(DatPopM$Domain) <- c(levels(DatPopM$Domain), "ba")
DatPopMA <- subset(DatPopM, DatPopM$Domain == "a" | DatPopM$Domain == "ab", stringAsFactors = FALSE)
DatPopMB <- subset(DatPopM, DatPopM$Domain == "b" | DatPopM$Domain == "ab", stringAsFactors = FALSE)
DatPopMB[DatPopMB$Domain == "ab",]$Domain <- "ba"
#Let calculate proportions of categories of variable Prog using MLDF estimator
#using Read as auxiliary variable
MLDF(DatMA$Prog, DatMB$Prog, DatMA$ProbA, DatMB$ProbB, DatMA$Domain, DatMB$Domain,
DatMA$Read, DatMB$Read, DatPopMA$Read, DatPopMB$Read, DatMA$Id_Frame, DatMB$Id_Frame,
DatPopMA$Domain, DatPopMB$Domain, N)
#Let obtain 95% confidence intervals together with the estimations
MLDF(DatMA$Prog, DatMB$Prog, DatMA$ProbA, DatMB$ProbB, DatMA$Domain, DatMB$Domain,
DatMA$Read, DatMB$Read, DatPopMA$Read, DatPopMB$Read, DatMA$Id_Frame, DatMB$Id_Frame,
DatPopMA$Domain, DatPopMB$Domain, N, conf_level = 0.95)