FB {Frames2} | R Documentation |
Fuller-Burmeister estimator
Description
Produces estimates for population totals and means using the Fuller - Burmeister estimator from survey data obtained from a dual frame sampling desing. Confidence intervals are also computed, if required.
Usage
FB(ysA, ysB, pi_A, pi_B, domains_A, domains_B, conf_level = NULL)
Arguments
ysA |
A numeric vector of length |
ysB |
A numeric vector of length |
pi_A |
A numeric vector of length |
pi_B |
A numeric vector of length |
domains_A |
A character vector of size |
domains_B |
A character vector of size |
conf_level |
(Optional) A numeric value indicating the confidence level for the confidence intervals. |
Details
Fuller-Burmeister estimator of population total is given by
\hat{Y}_{FB} = \hat{Y}_a^A + \hat{\beta_1}\hat{Y}_{ab}^A + (1 - \hat{\beta_1})\hat{Y}_{ab}^B + \hat{Y}_b^B + \hat{\beta_2}(\hat{N}_{ab}^A - \hat{N}_{ab}^B)
where optimal values for \hat{\beta}
to minimize variance of the estimator are:
\left( \begin{array}{c}
\hat{\beta}_1\\
\hat{\beta}_2
\end{array} \right)
= -
\left( \begin{array}{cc}
\hat{V}(\hat{Y}_{ab}^A - \hat{Y}_{ab}^B) & \widehat{Cov}(\hat{Y}_{ab}^A - \hat{Y}_{ab}^B, \hat{N}_{ab}^A - \hat{N}_{ab}^B)\\
\widehat{Cov}(\hat{Y}_{ab}^A - \hat{Y}_{ab}^B, \hat{N}_{ab}^A - \hat{N}_{ab}^B) & \hat{V}(\hat{N}_{ab}^A - \hat{N}_{ab}^B)
\end{array} \right)^{-1}
\times
\left( \begin{array}{c}
\widehat{Cov}(\hat{Y}_a^A + \hat{Y}_b^B + \hat{Y}_{ab}^B, \hat{Y}_{ab}^A - \hat{Y}_{ab}^B)\\
\widehat{Cov}(\hat{Y}_a^A + \hat{Y}_b^B + \hat{Y}_{ab}^B, \hat{N}_{ab}^A - \hat{N}_{ab}^B)
\end{array} \right)
Due to Fuller-Burmeister estimator is not defined for estimating population sizes, estimation of the mean is computed as \hat{Y}_{FB} / \hat{N}_H
, where \hat{N}_H
is the estimation of the population size using Hartley estimator.
Estimated variance for the Fuller-Burmeister estimator can be obtained through expression
\hat{V}(\hat{Y}_{FB}) = \hat{V}(\hat{Y}_a^A) + \hat{V}(\hat{Y}^B) +
\hat{\beta}_1[\widehat{Cov}(\hat{Y}_a^A, \hat{Y}_{ab}^A) - \widehat{Cov}(\hat{Y}^B, \hat{Y}_{ab}^B)]
+ \hat{\beta}_2[\widehat{Cov}(\hat{Y}_a^A, \hat{N}_{ab}^A) - \widehat{Cov}(\hat{Y}^B, \hat{N}_{ab}^B)]
If both first and second order probabilities are known, variances and covariances involved in calculation of \hat{\beta}
and \hat{V}(\hat{Y}_{FB})
are estimated using functions VarHT
and CovHT
, respectively. If
only first order probabilities are known, variances are estimated using Deville's method and covariances are estimated using following expression
\widehat{Cov}(\hat{X}, \hat{Y}) = \frac{\hat{V}(X + Y) - \hat{V}(X) - \hat{V}(Y)}{2}
Value
FB
returns an object of class "EstimatorDF" which is a list with, at least, the following components:
Call |
the matched call. |
Est |
total and mean estimation for main variable(s). |
VarEst |
variance estimation for main variable(s). |
If parameter conf_level
is different from NULL
, object includes component
ConfInt |
total and mean estimation and confidence intervals for main variables(s). |
In addition, components TotDomEst
and MeanDomEst
are available when estimator is based on estimators of the domains. Component Param
shows value of parameters involded in calculation of the estimator (if any).
By default, only Est
component (or ConfInt
component, if parameter conf_level
is different from NULL
) is shown. It is possible to access to all the components of the objects by using function summary
.
References
Fuller, W.A. and Burmeister, L.F. (1972). Estimation for Samples Selected From Two Overlapping Frames ASA Proceedings of the Social Statistics Sections, 245 - 249.
See Also
Examples
data(DatA)
data(DatB)
data(PiklA)
data(PiklB)
#Let calculate Fuller-Burmeister estimator for variable Clothing
FB(DatA$Clo, DatB$Clo, PiklA, PiklB, DatA$Domain, DatB$Domain)
#Now, let calculate Fuller-Burmeister estimator and a 90% confidence interval
#for variable Leisure, considering only first order inclusion probabilities
FB(DatA$Lei, DatB$Lei, DatA$ProbA, DatB$ProbB, DatA$Domain,
DatB$Domain, 0.90)