GSC_seq {FractalParameterEstimation} | R Documentation |
Simulation of Random Sierpinski-Carpets using variable probabilities
Description
This function simulates random Sierpinski-Carpets using different probabilities per ramification for the computation of the Bernoulli random variables placed in the matrix.
Usage
GSC_seq(p, sierp=TRUE)
Arguments
p |
A numeric vector of same length as ramifications for the simulated Sierpinski-Carpet. The vector contains values between 0 and 1 indicating the probability of success (0 or 1) for the Bernoulli random variables of the matrix in each ramification step. |
sierp |
An optional logical parameter: if |
Value
This function creates a matrix of size 3^N x 3^N
containing simulated zeros and ones from Bernoulli distribution under given probability p
. Here, N
is the ramification which equals the length of the input vector p
.
Author(s)
Philipp Hermann; Jozef Kiselak; Milan Stehlik\ philipp.hermann@jku.at; jozef.kiselak@upjs.sk; mlnstehlik@gmail.com
References
Hermann, P., Mrkvicka, T., Mattfeldt, T., Minarova, M., Helisova, K., Nicolis, O., Wartner, F., and Stehlik, M. (2015). Fractal and stochastic Geometry Inference for Breast Cancer: a Case Study with Random Fractal Models and Quermass-Interaction Process. Statistics in Medicine, 34(18), 2636-2661. doi: 10.1002/sim.6497.
Examples
GSC_seq(p = c(0.1,0.2,0.1,0.4), sierp = TRUE)
GSC_seq(p = c(rep(0.1,3),0.05), sierp = FALSE)
## this example equals th pppq-model for the estimation.