rgsm {ForestFit} | R Documentation |
Simulating realizations from the gamma shape mixture model
Description
Simulates realizations from a gamma shape mixture (GSM) model with probability density function given by
f(x,{\Theta}) = \sum_{j=1}^{K}\omega_j \frac{\beta^j}{\Gamma(j)} x^{j-1} \exp\bigl( -\beta x\bigr),
where \Theta=(\omega_1,\dots,\omega_K, \beta)^T
is the parameter vector and known constant K
is the number of components. The vector of mixing parameters is given by \omega=(\omega_1,\dots,\omega_K)^T
where \omega_j
s sum to one, i.e., \sum_{j=1}^{K}\omega_j=1
. Here \beta
is the rate parameter that is equal for all components.
Usage
rgsm(n, omega, beta)
Arguments
n |
Number of requested random realizations. |
omega |
Vector of the mixing parameters. |
beta |
The rate parameter. |
Value
A vector of length n
, giving random generated values from GSM model.
Author(s)
Mahdi Teimouri
References
S. Venturini, F. Dominici, and G. Parmigiani, 2008. Gamma shape mixtures for heavy-tailed distributions, The Annals of Applied Statistics, 2(2), 756–776.
Examples
n<-100
omega<-c(0.05, 0.1, 0.15, 0.2, 0.25, 0.25)
beta<-2
rgsm(n, omega, beta)