pgsm {ForestFit} | R Documentation |
Computing cumulative distribution function of the gamma shape mixture model
Description
Computes cumulative distribution function (cdf) of the gamma shape mixture (GSM) model. The general form for the cdf of the GSM model is given by
F(x,{\Theta}) = \sum_{j=1}^{K}\omega_j F(x,j,\beta),
where
F(x,j,\beta) = \int_{0}^{x} \frac{\beta^j}{\Gamma(j)} y^{j-1} \exp\bigl( -\beta y\bigr) dy,
in which \Theta=(\omega_1,\dots,\omega_K, \beta)^T
is the parameter vector and known constant K
is the number of components. The vector of mixing parameters is given by \omega=(\omega_1,\dots,\omega_K)^T
where \omega_j
s sum to one, i.e., \sum_{j=1}^{K}\omega_j=1
. Here \beta
is the rate parameter that is equal for all components.
Usage
pgsm(data, omega, beta, log.p = FALSE, lower.tail = TRUE)
Arguments
data |
Vector of observations. |
omega |
Vector of the mixing parameters. |
beta |
The rate parameter. |
log.p |
If |
lower.tail |
If |
Value
A vector of the same length as data
, giving the cdf of the GSM model.
Author(s)
Mahdi Teimouri
References
S. Venturini, F. Dominici, and G. Parmigiani, 2008. Gamma shape mixtures for heavy-tailed distributions, The Annals of Applied Statistics, 2(2), 756–776.
Examples
data<-seq(0,20,0.1)
omega<-c(0.05, 0.1, 0.15, 0.2, 0.25, 0.25)
beta<-2
pgsm(data, omega, beta)